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ABSTRACT
Online purchase forecasting is of great importance in e-commerce

platforms, which is the basis of how to present personalized in-

teresting product lists to individual customers. However, predict-

ing online purchases is not trivial as it is influenced by many

factors including: (i) the complex temporal pattern with hierar-

chical inter-correlations; (ii) arbitrary category dependencies. To

address these factors, we develop a Graph Multi-Scale Pyramid Net-

works (GMP) framework to fully exploit users’ latent behavioral

patterns with both multi-scale temporal dynamics and arbitrary

inter-dependencies among product categories. In GMP, we first de-

sign a multi-scale pyramid modulation network architecture which

seamlessly preserves the underlying hierarchical temporal factors–

governing users’ purchase behaviors. Then, we employ convolution

recurrent neural network to encode the categorical temporal pattern

at each scale. After that, we develop a resolution-wise recalibra-

tion gating mechanism to automatically re-weight the importance

of each scale-view representations. Finally, a context-graph neu-

ral network module is proposed to adaptively uncover complex

dependencies among category-specific purchases. Extensive experi-

ments on real-world e-commerce datasets demonstrate the superior

performance of our method over state-of-the-art baselines across

various settings.
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1 INTRODUCTION
Online purchase prediction is of great importance for a wide spec-

trum of user-centric applications in online retailing platforms, rang-

ing from personalized recommender systems [2], user activity mod-

eling [38] and resource management [6]. For instance, by knowing

the categories of products, customers tend to purchase on a daily ba-

sis, online retailers can: (i) alleviate the information overload issue

and help customers to meet a variety of their needs and tastes [34];

(ii) increase the profit for online retailers through managing the

traffic [28]. Hence, making predictions on customers’ future online

purchases is key to enhancing the experience and satisfaction of

customers and online retailers. To facilitate this task, we seek to

develop effective predictive models with the goal of forecasting

purchase behavior of customers on each product category at the

future time step given their historical purchase records.

Intuitively, we can employ conventional time series forecasting

techniques. However, the purchase sequences involve dynamic and

non-linear temporal dependencies across time steps, which pose

difficulties to many existing time series forecasting models–relying

on the stationary and linear assumption of time series data, such

as autoregressive integrated moving average (ARIMA) [18] and its

variants (e.g., seasonal-ARIMA [15]). To mitigate this issue, vari-

ous types of non-linear deep neural network models (e.g., LSTM
and GRU) have been introduced to consider the time-varying se-

quential patterns. Nevertheless, a common drawback of the above

approaches is that only one dimensional temporal dynamics is con-

sidered, which may not properly reflect the variation in many real

world scenarios. In fact, real-world temporal patterns of customer

purchase behavior are much more complicated, involving daily

routines, weekly pattern, monthly periodicity, and even other per-

sonalized periodic transition regularities, which naturally form a
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type of multi-scale temporal dynamics. For example, in the scenar-

ios that product lifespan usually vary among different categories

(e.g., daily necessities, electronic devices), purchase behavioral data

is often exhibited with both time-dependent and multi-dimensional

dependencies. This sheds light on the weakness of existing time

series forecasting methods, and motivates us to capture multi-scale

temporal dynamics in modeling customers’ purchase behavior that

can result in more accurate prediction results.

In addition to the importance of considering multi-scale tempo-

ral patterns of online purchase behavior, another key dimension is

to understand dependencies among product categories, to augment

predictions with relevant context signals [25]. In real life, explicit

and implicit dependencies among product categories are ubiqui-

tous when users make online purchases [23]. For example, when

a user in an online store is examining sports clothes for athletic

activities, he/she might also be interested in buying fitness foods

which are good for weight loss and building muscle. People may

buy forks/plates and beer together for holding a party. In such cases,

purchases on different categories are no longer independent. If the

context-aware relationships among categories are ignored and each

individual category-specific purchases are treated as independent

ones, it is likely that the modeling of users’ purchase behavior is

inaccurate, and thus the prediction performance is degraded.

We identify two key challenges of modeling online purchase be-

havior, which motivate the model design (as illustrated in Figure 1).

Temporal Pattern FusionwithHierarchical Inter-Correlations.
It is a significant challenge to learn a temporal representation which

can comprehensively reflect time-ordered sequential patterns of

users’ purchase behavior from different scales (resolutions). Dif-

ferent scale views (e.g., daily, weekly, bi-weekly, monthly) usually

provide complementary information for modeling online purchase

activities [34]. Additionally, each scale view may exhibit pairwise

correlations or even higher-order cross-resolution correlations, and

can be represented in a hierarchical manner. If features are learned

from different views separately and then loosely couple them to-

gether by directly concatenating the feature embeddings as the

final representation, it cannot capture the cross-scale correlations

and preserve the semantic multi-scale structural information of

online purchase data. Hence, in order to learn meaningful purchase

representations from long, broad and hierarchical temporal inputs,

a robust across-scale temporal feature learning model with effective

pattern fusion mechanism is needed in our studied problem.

Dynamic and Arbitrary Category Dependencies. Distinct to
stationary inter-dependent relations, the process of inter-category

influences on online purchase behavior is rather dynamic [27],

since users’ purchase preferences could change over time (e.g.,
women may be no longer interested in pregnancy products after

the childbirth). Hence, prediction techniques for static scenarios

can hardly be responsive to dynamic changes. Additionally, the

dependencies across categories can be arbitrary since any pair of

category-specific purchases could potentially be related in various

online shopping scenarios [37]. For instance, a user can order snacks

from an online store for a social party or outdoor activities. Users

often make correlated purchases and exhibit different dependencies

in choosing items of different categories due to his/her specialty.

Therefore, to build effective online purchase predictive models with
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Figure 1: Illustration of the online purchase prediction prob-
lem with multi-scale temporal dynamics and arbitrary cate-
gory dependencies.

the context of category dependencies, it is crucial to generalize

our framework to jointly capture dynamic and arbitrary category

correlation structures.

To address the aforementioned challenges, this work proposes a

general framework–Graph Multi-Scale Pyramid Networks (GMP)–

for online purchase prediction. Specifically, at the first stage, we

design a multi-scale pyramid modulation network to model multi-

resolution temporal factors that govern the sequential regularities

of users’ purchase behavior. Then, we leverage convolution re-

current networks to encode multi-dimensional temporal patterns

separately from low-level (locally) to high-level (globally). At the

second stage, a resolution-wise recalibration gating mechanism is

developed to promote the collaboration across different resolution

views, and automatically capture the importance of contributed tem-

poral patterns. Finally, a context-graph neural network module is

proposed to handle dynamic dependencies among category-specific

purchases, which is able to adaptively aggregate global contextual

information when modeling complementary purchase behavior.

In summary, we highlight our contributions as follows:

• We introduce a novel multi-scale pyramid modulation network

architecture for predicting users’ online purchases, which can ex-

plore the high-order and time-dependent structural correlations

underlying multi-scale temporal dynamics of online purchase

behavior in a hierarchical way.

• We develop a resolution-wise recalibration gating mechanism for

fusing scale-specific pattern representations, and automatically

capturing the importance of each scale-view in the predictive

model. In addition, we propose a context-graph neural network

module which is capable of uncovering dynamic dependencies

among categories.

• Extensive experiments on three real-world e-commerce datasets

are performed along with comparisons to existing state-of-the-

art predictive models, to demonstrate the advantages of our GMP

model across various settings.

2 PROBLEM FORMULATION
In this section, we begin with some necessary notations and then

formally present the online purchase forecasting problem in this

paper. Suppose we haveM usersU = {u1, ...,um , ...,uM } (1 ≤ m ≤

M) and N project categories C = {c1, ..., cn , ..., cN } (1 ≤ n ≤ N ).
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We refer to an individual user as um ∈ U , an individual product

category as cn ∈ C , wherem, n and t are defined as the index for

the user, category and time step, respectively.

Definition 1. Purchase Matrix Xm . Given a window ofT time
steps (e.g., day), we define a matrix Xm ∈ RN×T to represent the
purchase records of each user um on each category cn ∈ C over time.
The (n, t)-th entry of Xm is denoted as xtm,n . In particular, xtm,n = 1

if them-th user purchased items of n-th category at the t-th time step
and xtm,n = 0 otherwise.

Problem Statement. With the aforementioned definitions, online

purchase prediction problem can be formulated as: given the pur-

chase behavior data of each user (i.e., Xm ) from previous T time

steps, the objective is to learn a mapping function which predicts

the unknown purchase behaviors of each user um on each product

category cn in the future time steps (i.e., x (T+1)m,n ).

x
(T+1)
m = F (Xm ∈ RN×T ); (um ∈ U ) (1)

where F (·) is the mapping function we aim to learn, x
(T+1)
m =

{x
(T+1)
m,1 , ...,x

(T+1)
m,n , ...,x

(T+1)
m,N }.

3 METHODOLOGY
Generally speaking, our proposed GMP model consists of four key

components (as shown in Figure 4): a) modeling temporal hierar-

chy with a multi-scale pyramid modulation network; b) learning

resolution-aware dynamic sequential patterns with a stacked convo-

lutional recurrent encoder; c) aggregating the multi-level temporal

representations with a recalibration gating mechanism; d) captur-

ing implicit category dependencies with a context-graph neural

network.

3.1 Multi-Scale Pyramid Modulation Network
We propose a multi-scale pyramid modulation network to capture

the multi-grained temporal hierarchical structures of online pur-

chase patterns. Following the pyramid architecture, it consists of

bottom-up modulation network and top down modulation network.

The bottom-up network is a hierarchical feedforwad convolu-

tional framework that models temporal feature dynamics of user’s

online purchase patterns with multi-time granularity information.

Each convolutional layer is able to generate high-level semantic rep-

resentations of purchase patterns by increasing the receptive field

of subsequent layers. In particular, given a user um , the bottom-up

convolutional network takes the purchase matrix Xm ∈ RN×T

as input and perform convolutional operations on L levels (in-

dexed by l ) of time resolutions to generate feature representations

Ylm ∈ R
N× T

2
l ×el

in l-th level (el denotes the channel size of l-th
layer), each of which operate at increasing temporal resolution.

Formally, each convolutional layer can be represented as follows:

Ylm = ReLU (Wl
bom ∗ Y(l−1)m + blbom ) (2)

where , ∗ is the convolutional operation, Wl
bom and blbom repre-

sents the transformation matrix and bias term in l-th layer of the

bottom-up network, respectively. We output the feature represen-

tation on Xm
of user um with highest level semantic signals of at

the final layer, i.e., YLm .

In the bottom-up network, we set the kernel size as 3× 1 at each

layer with a stride of 2. The number of channels in our bottom-up

network is set as (4, 16, 32, 64) for successive convolutional layers.

After stacking L convolutional layers, the bottom-up network will

generate intermediate latent representations (i.e., YLm ) of user um ’s

purchase behavior on all categories from previous T time steps.

During the process of feature representation learning, to avoid

the aliasing effect of sampling across dimensions with different

categories [26, 32], we only perform convolutional operations on

the temporal dimension and fix the category dimension in the input

matrix of each layer.

The feature maps generated from the bottom-up network en-

code the temporal patterns from low to high granularities. However,

different levels are expected to be characterized with different gran-

ularities of temporal patterns. The flexibility of the mere bottom-up

network is limited in the sense that the granularities of the tem-

poral patterns captured in the feature maps at two consecutive

layers are highly sensitive to hyperparameter settings (i.e.kernel
size, stride size). To address this issue, we leverage a top-down

modulation network, a symmetric structure of bottum-up network

with a reverse order from low to high granularities, while utilizing

lateral connections to enhance the mapping operation between the

original layer and the corresponding reconstructed layer.

In our multi-scale pyramid modulation architecture, the top-

down modulation network starts from the last layer of the above

bottom-up feedforward network. Then, we apply the stacked con-

volutional layers to transmit higher-level semantic signals into the

feature representation learning process of purchase patterns with

lower-level resolutions. More specifically, we use convolutional

neural network with upsampling operations to propagate encoded

feature representations into each l-th layer (1 ≤ l ≤ L) in the

top-down architecture. The formulation of feature representation

Zlm ∈ R
N× T

2
l ×дl

(дl is the channel dimension in top-down network)

for l-th layer can be given as:

Zlm = ReLU (Wl
top ∗ Z(l+1)m + bltop ) (3)

where Wl
top and bltop are learned parameters. Furthermore, we

enhance the feature learning of top-down framework with lat-

eral connections between the bottom-up and top-down networks,

which incorporates the resolution contextual signals to guide the

feature learning of top-down network. Particularly, first, the lateral

connection leverages point-wise convolutional neural networks to

transform ( T
2
l ×N ×el ) from bottom-up architecture to ( T

2
l ×N ×дl ),

where дl is the number of channels in top-down network. Then, the

element-wise addition is applied to the same level of bottom-up and

top-down layers. Therefore, the learned feature representations are

flexible and comprehensive in the sense that the representations

capture a various range of temporal pattern granularities.

3.2 Multi-Modal Conv-Recurrent Encoder
Given the generated feature representations {Z1m , ...,Zlm , ...,ZLm }

from the above pyramid architecture, we develop amulti-modal con-

volutional recurrent encoder to model multiple temporal dynamics

of purchase patterns across time steps. The Conv-RNN model has

been introduced as a RNN variant for sequence modeling with both

spatial and temporal information [31]. Our Conv-RNN cell involves
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2
l × N × el ) to ( T

2
l × N × дl )) between bottom-up and

top-down pathways.
⊕

represents the element-wise addition operation. (c) Each resolution-specific feature representation Zlm
from l-th level of pyramid architecture will be fed into a ConvGRU encoder. We plot only one level of multi-modal recurrent
framework, due to space limit. (d) H ∈ RN×(L ·dc ) is a multi-resolution representation matrix which is concatenated from the
encoded resolution-specific temporal representations hl (1 ≤ l ≤ L).

convolutional operations with GRU unit, which can be formally

presented as:

rk = σ (Wxr ∗ Xk +Whr ∗ hk−1 + br )

zk = σ (Wxz ∗ Xk +Whz ∗ hk−1 + bz )

Jk = rk ◦ Jk−1 + zk ◦ tanh(Wxc ∗ +Whc ∗ hk−1 + bc )

hk = zk ◦ tanh(Jk ) (4)

where rk and zk represents the outputs of reset gate and update

gate at the k-th time step in recurrent neural network. ∗ is the

convolutional operation. We denote the cell output at the k-th time

step as Jk and the hidden state of a cell at the k-th time step as hk .
To model time-evolving temporal dependencies of multi-level

feature representations from our pyramid modulation network, we

develop a convolutional recurrent encoder, to account for each

resolution-specific feature representation Zlm of user um . In par-

ticular, we first slice each learned feature representations Zlm over

time dimension and then obtain {Zlm,1...,Z
l
m,k , ...,Z

l
m, T

2
l
}, where

Zlm,k ∈ RN×дl
. Then, we feed the last K data points of each

level into its corresponding ConvGRU layer to encode sequen-

tial patterns. Formally, we denote the derivations of hidden vec-

tor representation hlk ∈ RN×dc
for l-th pyramid scale as hlk =

ConvGRU(Zlm,k ,h
l
k−1).

The advantages of utilizing ConvGRU lie in: (i) it is able to cap-

ture temporal correlations across time steps; (ii) the convolution

operator enables the consideration of topological information in

Zlm,k . An alternative way to consider temporal dependencies is to

directly flatten the input matrix Zlm,k into a vector and then feed

…
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Figure 3: Illustration of the recalibration gatingmechanism.

into a GRU layer. However, by doing so, it is likely that a lot of

contextual spatial signals would be lost.

3.3 Resolution-Wise Gating Mechanism
In our GMP framework, the goal of the resolution-wise recalibra-

tion gating mechanism is to select the most informative compo-

nents from the encoded resolution-specific temporal representa-

tions hl (1 ≤ l ≤ L), and then aggregate the representation of

informative resolution elements to characterize user’s purchase

patterns. In order to exploit the element dependencies over reso-

lution dimension, we first concatenate hl from each l-th layer to

construct a multi-resolution representation matrix H ∈ RN×(L ·dc )

as:

H = h1 ⊕ ... ⊕ hl ⊕ ... ⊕ hL (5)

where ⊕ represents the concatenation operation. Then, we apply

global average pooling Fpool on H over N category dimensions to
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produce the summary of each element-wise ([1, ...,p, ..., (L · dc )]
indexed by p) representations as:

φ(p) = Fpool (H) =
1

N

N∑
n=1

H (p)
(6)

whereφ(p) denotes the p-th element in the pooling summarized vec-

torφ ∈ R1×(L ·dc ). We then propose a resolution-aware recalibration

gatingmechanism to recalibrate the information distribution among

all fine-grained elements across resolutions, i.e., 1 ≤ q ≤ (L · dc ).
We define s as the importance score vector to indicate the impor-

tance of all elements in H. Formally, our gating mechanism can be

represented as follows:

s = σ (W2 · δ (W1 · φ)) (7)

Here,W1 andW2 is the corresponding transformation matrix of

two fully connected neural network layers. σ and δ dentes the

Sigmoid and ReLU activation function, respectively. Finally, the

aggregation process is given as follows:

h̃n = hn,1 ◦ s1 ⊎ ... ⊎ hn,l ◦ sl ⊎ ... ⊎ hn,L ◦ sL ; l ∈ [1, ...,L] (8)

where h̃n denotes the summarized multi-resolution representation

on category cn and sl is the sub-vector of s corresponding to the

l-th resolution. ⊎ and ◦ is defined as the element-wise summation

and multiplication, respectively. s(p) is the p-th entry of vector s .

3.4 Context-Graph Neural Network
In this subsection, we show how to encode the contextual signals in

our predictive solution GMP, by modeling the inter-dependencies of

purchase behavior between different categories with graph neural

network. We first define the following input.

Definition 2. Category Graph G. Our context-graph neural
network is defined over the category graph G = (V ,E), where V
and E is the set of all vertices and edges, respectively. Each vertex
corresponds to a specific category cn and each edge indicates the
relationship between two product categories.

Definition 3. Adjacent Matrix A. A ∈ RN×N represents the
adjacency matrix whose entries (i.e., an,n′ ) is the correlations between
two categories (i.e., cn and cn′). In particular, an,n′ is the estimated
similarity between the learned summarized representation vector
h̃n and h̃n′ (encoded from the recalibration gating mechanism), i.e.,

aln,n′ = exp−d (h̃n,l , h̃n′,l ), where d(·) represents the Euclidean dis-

tance [17] between h̃n,l and h̃n′,l .

A graph convolution layer GC(·) receives an input H̃l ∈ R
N×dl

from l-th layer and produces H̃l ∈ R
N×dl+1 as:

H̃∗
l+1 = GC(H̃l ,Al ) = δ (Al H̃lWд) (9)

where Wд ∈ Rdl×dl+1 denotes the feature transformation matrix.

δ (·) is a point-wise non-linearity ReLU activation function. In each

l-th graph convolution layer, the adjacency matrix Al is updated

based on the new estimated vertex embedding vectors h̃n (n ∈

[1, ...,N ]). We further normalize the trainable adjacency matrix A
with a stochastic kernel using a softmax along each row.

In our framework, we set the depth of our context-graph con-

volution network as the order of the graph diameter, so that all
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Figure 4: Illustration of the context-graph neural network.

vertex contextual information from the the entire graphG could be

incorporated in the learned vertex representation vectors. Instead

of handcrafed category graph construction, our context-graph neu-

ral network enables the automatic discovery of meaningful and

useful dependency features from category representations. The

probability of user um purchase items of n-th category at t-th time

step is computed by feeding each fused embedding vector to the

logistic regression.

3.5 Model Inference
In general, our online purchase prediction can be regarded as a

classification problem. We utilize cross entropy as the metric in our

loss function which is defined as follows:

L (Θ) = −
∑

(m,n,t )∈D

xmn,t logx̂
m
n,t + (1 − xmn,t )log(1 − x̂mn,t ) (10)

where Θ represents all learnable parameters in GMP. x̂mn,t denotes
the estimated probability of userum purchase items ofn-th category
at t-th time step. Here, D denotes the set of observed purchase

interactions in the training process. During the training phase,

we use Adam optimizer to infer model parameters by minimizing

the loss function. In addition, we apply Batch Normalization [4] to

reduce the internal covariance shift by transforming the input to

zero mean/unit variance distributions in each mini-batch training.

4 EVALUATION
To comprehensively evaluate our proposed model, we perform

experiments to answer the following questions:

• Q1: How is the overall prediction performance of our GMP as

compared with various types of state-of-the-art methods across

different categories?

• Q2: How does GMP perform compared with competitive ap-

proaches in forecasting individual category-specific purchases?

• Q3: How is the ranking-based performance ofGMP in forecasting

users’ category-specific purchases?

• Q4: How do the different components (e.g., resolution-wise recal-
ibration gating mechanism and context-graph neural network)

of GMP contribute to the model performance?

• Q5: How does our GMP model work with different evaluated

time resolution (e.g., 1 day, 3days, and etc)?

• Q6: How do different hyperparameter settings affect the perfor-

mance of GMP (Refer to Appendix Section 7 for details)?
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Table 1: Statistics of the experimented datasets.

Dataset # of Users # of Categories # of Purchases

JD-1 3,362 12 470,634

JD-2 11,593 12 2,127,351

JD-3 59,476 12 3,377,133

• Q7: How is the interpretation of ourGMP framework in capturing

dynamic category dependencies?

4.1 Experimental Settings
4.1.1 Datasets. We experimented with three real-world on-

line purchase datasets collected from JD.com (JD-1, JD-2 and JD-3)

within the time period from 01/01/2015 to 06/30/2018. Each online

purchase record is in the format of (product category, user id, times-

tamp). These datasets were collected with different data scales (i.e.,
the number of users and purchases), reflective of different degrees

of online purchase activities. Table 1 summarizes the statistics about

our experimented datasets. The details of data partition for training,

validation, and testing are presented in Appendix Section 7.

4.1.2 Methods for Comparison. We compared it with the

following state-of-the-art methods from various research lines:

Recurrent Neural Network-based Methods: Since RNNs have
shown their superiority in handling time-ordered sequential data

as compared to conventional time series analysis methods (e.g.,
ARIMA), we considered two developed variants of RNNs in the

performance evaluation.

• Sequential PredictionwithRecurrentNeural Network (SP-
RNN) [36]: a deep learning approach which models the depen-

dency on user’s online behavior prediction via the recurrent

neural network structure.

• Stacked Long Short-Term Memory Model (ST-LSTM) [33]:
ST-LSTM is a mixture deep recurrent architecture on dynamic

time series data by unifying stacked LSTM networks.

Attentive Recurrent Models: we further compare with another

line of methods that models time-stamped data with the integration

of attention mechanism and recurrent neural networks.

• Dual-Stage Attentive Recurrent Networks (DA-RNN) [19]:
DA-RNN is a dual stage attentive time series prediction method

which consists of an encoder with an input attention mechanism

and a decoder with a temporal attention mechanism.

• Attentive Bidirectional Recurrent Model (Dipole) [16]: It
models the temporal and high dimensional time series data by

employing bidirectional recurrent neural networks and further

interpreting learned representations with attention mechanisms.

Recommendations Techniques with Temporal Dynamics: In
the performance comparison, we also include recommendation

models which care about temporal drift effect.

• Long- and Short-term Time-Series Network (LSTNet) [10]:
LSTNet combines the convolution neural network and the re-

current neural network, to extract short-term local dependency

patterns and discover long-term patterns for time series trends.

• Conv-SequenceRecommendationModel (Caser) [22]: Caser
first embeds a sequence of recent items into a tensor and then

learns sequential patterns using convolutional filters.

Table 2: Prediction results across different categories in
terms of Macro-F1 (Mac-F1) and Micro-F1 (Mic-F1).

Dataset JD-1 JD-2 JD-3

Metrics Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1

Caser 0.1994 0.1303 0.1969 0.1232 0.1423 0.0903

Dipole 0.2237 0.1490 0.1720 0.0626 0.1290 0.0634

LSTNet 0.2638 0.0784 0.3332 0.1325 0.0829 0.0393

SP-RNN 0.2100 0.1382 0.3050 0.1921 0.1467 0.0951

DARNN 0.2948 0.1537 0.1720 0.0626 0.0829 0.0393

ST-LSTM 0.2736 0.1823 0.208 0.1262 0.1514 0.0970

mWDN 0.3426 0.2270 0.2685 0.1717 0.1709 0.1638

GMP 0.3799 0.2444 0.3531 0.2232 0.3118 0.1919

Hybrid Multi-level Model: Finally, we compare our GMP with

a hybrid time series analysis approach with multi-level wavelet

decomposition networks.

• MultilevelWavelet DecompositionNetwork (mWDN) [24]:
mWDN is a wavelet-based neural network architecture which

integrates the multilevel discrete wavelet decomposition and the

frequency-aware LSTM for time series forecasting.

4.1.3 Evaluation Protocols. To fully measure the effective-

ness of our GMP framework for online purchase prediction, we

adopt three types of evaluation metrics:

• Prediction across Categories. We use Marco-F1 and Micro-F1
to evaluate the prediction accuracy across different product cate-

gories [13]. They indicate the overall performance across different

classes (categories).

• Prediction on Individual Categories. We use F1-score (har-

monic mean to balance precision and recall) and Area Under
Curve (AUC) [3] as evaluation metrics for the accuracy of pre-

dicting user’s purchases on each individual category.

• Ranking-based Performance. To assess the ranked list with

the ground-truth user who has actual category-specific purchases,

we adopt Mean Average Precision (MAP)@k and Normalized Dis-
counted Cumulative Gain (NDCG)@k [5], where MAP@k com-

putes the average precision of top-k ranked users and NDCG@k
accounts for the position of hit for specific n-th category.

Note that all metrics are the higher the better.

4.1.4 Parameter Settings. The parameter settings and imple-

mentation details are presented in Appendix (Section 7).

4.2 Overall Performance Comparison (Q1)
Table 2 shows both the forecasting accuracy across categories of

different methods on three datasets in terms of Macro-F1 and Micro-

F1. We summary key observations as follows:

(1) GMP achieves the best performance and obtains high improve-

ments over different types of state-of-the-art methods in all cases.

This sheds lights on the benefit of our GMP model which jointly

captures multi-scale temporal dynamics and arbitrary category

dependencies. The performance is followed by mWDN which de-

composes an online purchase series into a group of sub-series to

capture multi-dimensional frequency factors. This further verifies

the utility of considering multi-dimensional temporal information
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Table 3: Purchase prediction results on individual categories in terms of F1-score and AUC.

Category Density Metrics Caser Dipole LSTNet SP-RNN DARNN ST-LSTM mWDN GMP

Beauty & Care ds = 2.9%
F1-score 0.0440 0.0704 0.0584 0.0590 0.0295 0.1173 0.1899 0.2439
AUC 0.7311 0.7424 0.7574 0.7284 0.7433 0.7555 0.7646 0.7832

Clothing & Shoes ds = 3.83%
F1-score 0.2396 0.2592 0.2607 0.2291 0.2736 0.1505 0.2201 0.2942
AUC 0.7049 0.7357 0.7308 0.7181 0.7227 0.7490 0.7490 0.8212

Computers & Office ds = 1.25%
F1-score 0.1820 0.1935 0.1874 0.1790 0.1548 0.2283 0.2050 0.2807
AUC 0.6888 0.7007 0.7052 0.6904 0.6729 0.7049 0.6984 0.7420

Electronics ds = 3.16%
F1-score 0.3189 0.3418 0.3461 0.3277 0.3279 0.3755 0.1302 0.4307
AUC 0.7562 0.7745 0.7464 0.7603 0.7551 0.7855 0.7901 0.8233

Food & Grocery ds = 3.65%
F1-score 0.3511 0.3891 0.5146 0.3684 0.4959 0.4512 0.5743 0.5884
AUC 0.6949 0.7008 0.7227 0.6959 0.7101 0.7022 0.6968 0.7370

Fresh Food ds = 1.85%
F1-score 0.0997 0.1274 0.0896 0.1131 0.0689 0.1587 0.1361 0.1516
AUC 0.6305 0.6484 0.6603 0.6352 0.6365 0.6607 0.6591 0.6832

Health & Medicine ds = 1.61%
F1-score 0.1010 0.1088 0.1804 0.1077 0.1652 0.1227 0.1191 0.1270
AUC 0.6894 0.7151 0.7328 0.6983 0.7267 0.7307 0.7383 0.7788

Home & Furniture ds = 1.97%
F1-score 0.1847 0.2321 0.3442 0.2037 0.3804 0.3267 0.2301 0.4045
AUC 0.7380 0.7563 0.7712 0.7418 0.7610 0.7626 0.7672 0.7956

Luggage & Gift ds = 3.29%
F1-score 0.1896 0.2102 0.2546 0.1998 0.3204 0.2268 0.1645 0.3440
AUC 0.6619 0.6812 0.6864 0.6695 0.6874 0.6893 0.6832 0.7249

Mother & Baby ds = 2.11%
F1-score 0.1430 0.1447 0.1002 0.1361 0.1100 0.1452 0.1159 0.1515
AUC 0.6108 0.6431 0.6520 0.6241 0.6469 0.6553 0.6542 0.7190

Travel & Outdoors ds = 1.38%
F1-score 0.0436 0.0617 0.1382 0.0566 0.1562 0.0892 0.1957 0.2611
AUC 0.7197 0.7412 0.7603 0.7207 0.7571 0.7548 0.7682 0.8016

Toys & Instruments ds = 0.96%
F1-score 0.1179 0.1684 0.2426 0.1422 0.1274 0.2062 0.2790 0.3172
AUC 0.6487 0.6613 0.6975 0.6545 0.6771 0.6750 0.6680 0.7266

in predicting online purchases. However, mWDN fails to consider

high-order inter-dependencies across time resolutions. In contrast,

GMP dynamically learning cross-level semantics from data, which

shows remarkably flexibility and superiority.

(2) With the increase of the number of users and purchases, the

performance improvement of GMP compared with other baselines

also increases. The reason may be that the learned feature rep-

resentations are more informative for a relatively larger scale of

purchase activities, in which the multi-scale dynamics of online

purchase behavior is more obvious. In addition, there is no obvious

winner among attentive recurrent models and temporal recommen-

dation techniques. This again confirms that only considering data

dependencies and interactions from singular temporal dimension

is insufficient to model complex sequential purchase transition reg-

ularities exhibited with multi-scale behavior dynamics.

4.3 Category-Specific Prediction Accuracy (Q2)
We investigated the effectiveness of GMP in predicting users’ pur-

chases on each individual category and report the evaluation results

in Table 3. We can observe that our GMP achieves the best perfor-

mance in all forecasting cases. Additionally, we could notice that

obvious improvements can also be obtained by GMP in predicting

purchases of different categories, which shows the robustness of

our GMP’s prediction performance.

4.4 Ranking Performance Comparison (Q3)
Furthermore, we alsomeasure the ranking quality of top-k predicted
users for future category-specific purchase of ourGMP methodwith

varying k from 200 to 1000. The evaluation results (measured by

MAP@k and NDCG@k) of GMP and the best performed baseline
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Figure 5: Purchase prediction results on individual cate-
gories in terms of NDCG@k .
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Figure 6: Purchase prediction results on individual cate-
gories in terms of MAP@k .

(mWDN) on JD-1 data traces are presented in Figure 6 and Figure 5.

We can observe that GMP achieves the best performance under

different values of k , which suggests that our GMP model assigns

higher score to the true users in the top-k ranked list and hit the

ground truth at top positions.

4.5 Component-Wise Evaluation of GMP (Q4)
In our evaluation, we consider five variants of the proposed method

corresponding to different analytical aspects:

• Effect of CategoryDependenciesGMP-g: A simplified version

of GMP which does not include context-graph neural module to

consider dependencies among categories.
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Figure 7: Evaluation on GMP variants.

• Effect of Recalibration Gating Mechanism. GMP-r: A sim-

plified version of GMP which does not include the recalibration

gating mechanism to model element-wise correlations from en-

coded resolution-aware representations.

• Aliasing Effect in Pyramid Modulation Network. GMP-a:
During the process of feature map generation in the bottom-up

convolutional networks, we perform the convolutional operation

with 3 × 3 filter size to directly consider category correlations

using the local structure information.

• Impact of Modeling Cross-level Semantics. GMP-t: We only

reply on the bottom-up convolutional network to encode the

underlying multi-dimensional structures of evolving temporal

dependencies, i.e., without the top-down modulation network in

the multi-scale pyramid architecture.

• Effectiveness of EncodedMulti-Scale Temporal Dynamics.
GMP-l: To further evaluate the quality of the latent representa-

tions learned from our designed multi-scale pyramid networks,

we first perform flatten operation on the learned resolution-

specific temporal representations and then feed them into an

integrative framework of LSTM and MLP for making predictions.

We report the evaluation results in Figure 7. We can notice that

the full version of our developed framework GMP achieves the best

performance in all cases, which suggests: (i) the effectiveness of

GMP in capturing the category-aware inter-relations between users’

online purchases in a dynamic environment; (ii) the efficacy of the

designed recalibration gating mechanism in handling hierarchical

structural relations among resolution-aware purchase patterns;

(iii) the rationality of GMP in addressing the aliasing effect in the

feature representation process from different modalities; (iv) the

effectiveness of the top-down modulation networks for helping

GMP transmit high-level temporal semantics back to low-level

latent representations.

4.6 Effect of Evaluated Time Resolution (Q5)
To further investigate the robustness ofGMP, we evaluate the model

performance with different resolutions of evaluated time step (i.e.,
from the finest resolution–1 day to the coarsest resolution–10 days)

as shown in Figure 8. We can observe that GMP consistently outper-

forms the best performed baseline mWDN with respect to different

evaluated resolutions for all category cases, which demonstrates the

robustness of our GMP framework in various purchase prediction

scenarios with different granularity of target time period.
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Figure 8: Prediction results on individual categories v.s. time
resolution of target period.
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Figure 9: The adjacent matrix A across different categories
updated from the first and second layer in our GMP. Cate-
gory index is consistent with the order in Table 3.

4.7 Case Study (Q7)
Apart from the superior forecasting performance, another key ad-

vantage of GMP is its ability in interpreting the dependencies across

different categories in predicting online purchases. To demonstrate

this, we perform case studies to show the explainability of our

framework by visualizing the dynamic adjacent matrix A (depen-

dency weights between categories) as shown in Figure 9. GMP will

update the adjacent matrix A through each layer. We could observe

that GMP enables the dynamic modeling of dynamic and arbitrary

correlations between different categories.

5 RELATEDWORK
Neural Next-Item Recommendation. Many deep neural net-

work models for next-item recommendation seek to model item-

item transition among successive items [9, 12, 35]. For instance,

Yuan et al. [35] studied the next-item recommendation problem by

considering both short- and long-range item dependencies. Kang

et al. [9] proposed a self-attention based sequential model to make

next item predictions based on relatively few items, to model user’s

sequential patterns. Complementary to next-item recommenda-

tions, accurate prediction of online purchase activities can help

sequential recommender systems to generate more relevant items

for ranking and offer more effective personalized recommendations.

Time SeriesData Forecasting.Although conventional approaches
(e.g., (ARIMA) [18] and Support Vector Regression (SVR) [21]) work

well for time series analysis in a static scenario, they are less ap-

plicable to capture the dynamic patterns among time series data.

To address this problem, RNNs-based methods (e.g., LSTM [29] and

GRU [8]) were proposed and have shown in their success in model-

ing sequential data. Additionally, further attempt–the integration
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of CNN-RNN network structure and attention mechanisms–was

made to adaptively identify values relevant from relevant time steps

for making forecasting [7, 19, 24]. However, most of the existing

deep neural network methods failed to pay attention to multi-levels

of temporal dynamics in the time series of user purchases, which is

the key concern of this work.

Time-stamped Behavior Modeling. There exists a good amount

of research work in modeling various behavioral time-stamped

data [1, 11, 14, 20, 30]. For example, Lian et al. [14] aimed to explore

user web activities with the consideration of high-order feature

interactions. Qiu et al. [20] investigated user social activities using

their local network information. Online purchases are different from

the above time-stamped human behavior. The sequential transition

regularities of purchase patterns is often exhibited with both high-

ordered time-dependent and temporal hierarchy nature, which pose

difficulties to comprehensively explore costumer purchases with a

multi-dimensional structure.

6 CONCLUSION
This work contributes a new framework, named GMP for online

purchase prediction via modeling behavior dynamics from both

multi-scale temporal patterns and arbitrary category dependencies.

Particularly, we develop a multi-scale pyramid neural network ar-

chitecture to explore the high-order correlations underlying multi-

resolution online purchase patterns. In addition, we propose a re-

calibration gating mechanism that is tailored to cooperate with

a hierarchical recurrent framework for multi-resolution pattern

fusion. With the help of context-graph neural network module, we

further consider contextual signals in encoding complex relations

between category-specific purchases. Finally, we perform extensive

experiments on three real-world datasets. Evaluation results shown

that the proposed model significantly outperforms the state-of-the-

art methods.
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7 APPENDIX

Table 4: Parameter Settings

Parameter Value

Input Series length: 128

# of Time Steps for Conv_LSTM: 5

Hidden State Dimensionality: 32

Embedding Dimension: 32

Batch Size: 64

Learning Rate: 1e-3

7.1 Implementation Details
For training/test data split, we use the data from 01/01/2015 to

01/01/2018 for training, data from 01/02/2018 to 01/15/2018 as val-

idation, and the data from 01/16/2018 to 06/30/2018 is used for

testing. We implemented all the deep learning baselines and the

proposed GMP framework with Tensorflow
1
. For training models,

we divided the datasets into training, validation and testing set in

chronological order. The validation set is used to select the best

parameter values. For the sake of fair comparison, all prediction

experiments are conducted across the consecutive time steps (i.e.,
day) in the test data (refer to data descriptions for details) and the

average performance is reported.

7.2 Parameter Settings
In our experiments, we set the dimension of hidden representation

and sequence length in convolutional recurrent encoder as 32 and

5, respectively. We have the channel size of [22, 24, 25, 26] which

corresponds to the process of high-level feature map generation

(with a larger latent representation space). The number of channels

in the top-down modulation network is set as 32. During the model

learning process, we used the Adam optimizer for gradient-based

model optimization, where the batch size and learning rate were

set as 64 and 0.001, respectively.
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Figure 10: Hyperparameter Studiesw.r.t the number of time
steps K . Categories with similar performance range are pre-
sented in the same figure.

7.3 Hyperparameters Studies (Q6)
Figure 10 and Figure 11 show the evaluation results with differ-

ent hyperparameter selections. From the evaluation results, we

could observe that our method GMP is not very sensitive to these

parameters. To be more specific, as K increases, the prediction per-

formance remains stable when K = 5. One potential reason is that

1
The code is available at https://github.com/graphmp.
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Figure 11: Hyperparameter Studiesw.r.t hidden state dimen-
sionality d . Categories with similar performance range are
presented in the same figure.

when considering larger sequence length, more parameters need

to be learned in the recurrent network architecture. In our experi-

ments, we set K = 5. Furthermore, we set the dimension size as 64,

due to the consideration of the trade-off between the effectiveness

and computational cost.
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