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Abstract
Self-paced learning (SPL) mimics the cognitive pro-
cess of humans, who generally learn from easy sam-
ples to hard ones. One key issue in SPL is the training
process required for each instance weight depends on
the other samples and thus cannot easily be run in a
distributed manner in a large-scale dataset. In this pa-
per, we reformulate the self-paced learning problem
into a distributed setting and propose a novel Dis-
tributed Self-Paced Learning method (DSPL) to han-
dle large scale datasets. Specifically, both the model
and instance weights can be optimized in parallel for
each batch based on a consensus alternating direc-
tion method of multipliers. We also prove the conver-
gence of our algorithm under mild conditions. Exten-
sive experiments on both synthetic and real datasets
demonstrate that our approach is superior to those of
existing methods.

1 Introduction
Inspired by the learning processes used by humans and animals
[Bengio et al., 2009], Self-Paced Learning (SPL) [Kumar et al.,
2010] considers training data in a meaningful order, from easy
to hard, to facilitate the learning process. Unlike standard cur-
riculum learning [Bengio et al., 2009], which learns the data in
a predefined curriculum design based on prior knowledge, SPL
learns the training data in an order that is dynamically deter-
mined by feedback from the individual learner, which means
it can be more extensively utilized in practice. In self-paced
learning, given a set of training samples along with their la-
bels, a parameter λ is used to represents the “age” of the SPL
in order to control the learning pace. When λ is small, “easy”
samples with small losses are considered. As λ grows, “harder”
samples with larger losses are gradually added to the training
set. This type of learning process is modeled on the way human
education and cognition functions. For instance, students will
start by learning easier concepts (e.g., Linear Equations) before
moving on to more complex ones (e.g., Differential Equations)
in the mathematics curriculum. Self-paced learning can also
be finely explained in a robust learning manner, where uncor-
rupted data samples are likely to be used for training earlier in
the process than corrupted data.

In recent years, self-paced learning [Kumar et al., 2010]
has received widespread attention for various applications in
machine learning, such as image classification [Jiang et al.,

2015], event detection [Jiang et al., 2014a; Zhang et al.,
2017c] and object tracking [Supancic and Ramanan, 2013;
Zhang et al., 2016]. A wide assortment of SPL-based meth-
ods [Pi et al., 2016; Ma et al., 2017a] have been devel-
oped, including self-paced curriculum learning [Jiang et al.,
2015], self-paced learning with diversity [Jiang et al., 2014b],
multi-view [Xu et al., 2015] and multi-task [Li et al., 2017;
Keerthiram Murugesan, 2017] self-paced learning. In addition,
several researchers have conducted theoretical analyses of self-
paced learning. [Meng et al., 2015] provides a theoretical anal-
ysis of the robustness of SPL, revealing that the implicit objec-
tive function of SPL has a similar configuration to a non-convex
regularized penalty. Such regularization restricts the contribu-
tions of noisy examples to the objective, and thus enhances the
learning robustness. [Ma et al., 2017b] proved that the learning
process of SPL always converges to critical points of its im-
plicit objective under mild conditions, while [Fan et al., 2017]
studied a group of new regularizers, named self-paced implicit
regularizers that are derived from convex conjugacy.

Existing self-paced learning approaches typically focus on
modeling the entire dataset at once; however, this may intro-
duce a bottleneck in terms of memory and computation, as to-
day’s fast-growing datasets are becoming too large to be han-
dled integrally. For those seeking to address this issue, the main
challenges can be summarized as follows: 1) Computational
infeasibility of handling the entire dataset at once. Traditional
self-paced learning approaches gradually grow the training set
according to their learning pace. However, this strategy fails
when the training set grows too large to be handled due to the
limited capacity of the physical machines. Therefore, a scalable
algorithm is required to extend the existing self-paced learn-
ing algorithm for massive datasets. 2) Existence of heteroge-
neously distributed “easy” data. Due to the unpredictability
of data distributions, the “easy” data samples can be arbitrar-
ily distributed across the whole dataset. Considering the entire
dataset as a combination of multiple batches, some batches may
contain large amount of “hard” samples. Thus, simply apply-
ing self-paced learning to each batch and averaging across the
trained models is not an ideal approach, as some models will
only focus on the “hard” samples and thus degrade the overall
performance. 3) Dependency decoupling across different data
batches. In self-paced learning, the instance weights depend
on the model trained on the entire dataset. Also, the trained
model depends on the weights assigned to each data instance.
If we consider each data batch independently, a model trained
in a “hard” batch can mistakenly mark some “hard” samples



as “easy” ones. For example, in robust learning, the corrupted
data samples are typically considered as “hard” samples, then
more corrupted samples will therefore tend to be involved into
the training process when we train data batches independently.

In order to simultaneously address all these technical chal-
lenges, this paper presents a novel Distributed Self-Paced
Learning (DSPL) algorithm. The main contributions of this
paper can be summarized as follows: 1) We reformulate the
self-paced problem into a distributed setting. Specifically, an
auxiliary variable is introduced to decouple the dependency of
the model parameters for each data batch. 2) A distributed self-
paced learning algorithm based on consensus ADMM is pro-
posed to solve the SPL problem in a distributed setting. The al-
gorithm optimizes the model parameters for each batch in par-
allel and consolidates their values in each iteration. 3) A theo-
retical analysis is provided for the convergence of our proposed
DSPL algorithm. The proof shows that our new algorithm will
converge under mild assumptions, e.g., the loss function can
be non-convex. 4) Extensive experiments have been conducted
utilizing both synthetic and real-world data based on a robust
regression task. The results demonstrate that the proposed ap-
proaches consistently outperform existing methods for multiple
data settings. To the best of our knowledge, this is the first work
to extend self-paced learning to a distributed setting, making it
possible to handle large-scale datasets.

The reminder of this paper is organized as follows. Section 2
gives a formal problem formulation. The proposed distributed
self-paced learning algorithm is presented in Section 3 and Sec-
tion 4 presents a theoretical analysis of the convergence of the
proposed method. In Section 5, the experimental results are an-
alyzed and the paper concludes with a summary of our work in
Section 6.

2 Problem Formulation
In the context of distributed self-paced learning, we consider
the samples to be provided in a sequence of mini batches as
{(X(1),y(1)), . . . , (X(m),y(m))}, where X(i) ∈ Rp×ni rep-
resents the sample data for the ith batch, y(i) is the correspond-
ing response vector, and ni is the instance number of the ith
batch.

The goal of self-paced learning problem is to infer the model
parameterw ∈ Rp for the entire dataset, which can be formally
defined as follows:

argmin
w,v

m∑
i=1

fi(w,vi) + ‖w‖22

s.t. vij ∈ [0, 1], ∀i = 1, . . . ,m, ∀j = 1, . . . , ni

(1)

where ‖w‖22 is the regularization term for model parameters
w. Variable vi represents the instance weight vector for the ith
batch and vij is the weight of the jth instance in the ith batch.
The objective function fi(w,vi) for each mini-batch is defined
as follows:

fi(w,vi) =

ni∑
j=1

vijL(yij , g(w,xij))− λ
ni∑
j=1

vij (2)

We denote xij ∈ Rp and yij ∈ R as the feature vector and its
corresponding label for the jth instance in the ith batch. The loss
function L is used to measure the error between label yij and

Table 1: Mathematical Notations

Notations Explanations
p feature number in data matrixX(i)

ni instance number in the ith data batch
X(i) data matrix of the ith batch
y(i) the response vector of the ith batch
w model parameter of the entire dataset
vi instance weight vector of the ith batch
vij weight of the jth instance in the ith batch
λ parameter to control the learning pace
L loss function of estimated model

the estimated value from model g. The term−λ
∑ni

j=1 vij is the
regularization term for instance weights vi, where parameter λ
controls the learning pace. The notations used in this paper are
summarized in Table 1.

The problem defined above is very challenging in the fol-
lowing three aspects. First, data instances for all m batches
can be too large to be handled simultaneously in their entirety,
thus requiring the use of a scalable algorithm for large datasets.
Second, the instance weight variable vi of each batch depends
on the optimization result for w shared by all the data, which
means all the batches are inter-dependent and it is thus not fea-
sible to run them in parallel. Third, the objective function of
variables wi and vi are jointly non-convex and it is an NP-
hard problem to retrieve the global optimal solution [Gorski et
al., 2007]. In next section, we present a distributed self-paced
learning algorithm based on consensus ADMM to address all
these challenges.

3 The Proposed Methodology
In this section, we propose a distributed self-paced learning al-
gorithm based on the alternating direction method of multipli-
ers (ADMM) to solve the problem defined in Section 2.

The problem defined in Equation (1) cannot be solved in par-
allel because the model parameterw is shared in each batch and
the result of w will impact on the instance weight variable vi
for each batch. In order to decouple the relationships among
all the batches, we introduce different model parameterswi for
each batch and use an auxiliary variable z to ensure the uni-
formity of all the model parameters. The problem can now be
reformulated as follows:

argmin
wi,vi,z

m∑
i=1

fi(wi,vi;λ) + ‖z‖22

s.t. vij ∈ [0, 1], ∀i = 1, . . . ,m, ∀j = 1, . . . , ni

wi − z = 0, ∀i = 1, . . . ,m

(3)

where the function fi(wi,vi) is defined as follows.

fi(wi,vi;λ) =

ni∑
j=1

vijL(yij , g(wi,xij))− λ
ni∑
j=1

vij (4)

Unlike the original problem defined in Equation (1), here
each batch has its own model parameter wi and the constraint
wi−z = 0 for ∀i = 1, . . . ,m ensures the model parameterwi
has the same value as the auxiliary variable z. The purpose of
the problem reformulation is to optimize the model parameters



wi in parallel for each batch. It is important to note that the
reformulation is tight because our new problem is equivalent to
the original problem when the constraint is strictly satisfied.

In the new problem, Equation (3) is a bi-convex optimization
problem over vi andwi for each batch with fixed z, which can
be efficiently solved using the Alternate Convex Search (ACS)
method [Gorski et al., 2007]. With the variable v fixed, the re-
maining variables {wi}, z and α can be solved by consensus
ADMM [Boyd et al., 2011]. As the problem is an NP-hard
problem, in which the global optimum requires polynomial
time complexity, we propose an alternating algorithm DSPL
based on ADMM to handle the problem efficiently.

The augmented Lagrangian format of optimization in Equa-
tion (3) can be represented as follows:

L =

m∑
i=1

fi(wi,vi;λ) + ‖z‖22 +
m∑
i=1

αTi (wi − z)

+
ρ

2

m∑
i=1

‖wi − z‖22

(5)

where {αi}mi=1 are the Lagrangian multipliers and ρ is the
step size of the dual step.

The process used to update model parameter wi for the ith
batch with the other variables fixed is as follows:

wk+1
i = argmin

wi

fi(wi,vi;λ) + [αki ]
T (wi − zk)

+
ρ

2
‖wi − zk‖22

(6)

Specifically, if we choose the loss function L to be a squared
loss and model g(w,xij) to be a linear regression g(w,xij) =
wTxij , we have the following analytical solution for wi:

wk+1
i =

(
2

ni∑
j=1

vijxijx
T
ij + ρ · I

)−1

·
(
2

ni∑
j=1

vijxijyij −αki + ρzk
) (7)

The auxiliary variable z and Lagrangian multipliers αi can
be updated as follows:

zk+1 =
ρ

2 + ρm

m∑
i=1

(wk+1
i +

1

ρ
αki )

αk+1
i = αki + ρ(wk+1

i − zk+1)

(8)

The stop condition of consensus ADMM is determined by
the (squared) norm of the primal and dual residuals of the kth

iteration, which are calculated as follows:

‖rk‖22 =

m∑
i=1

‖wk
i − zk‖

2
2

‖sk‖22 = mρ2‖zk − zk−1‖22

(9)

After the weight parameter wi for each batch has been up-
dated, the instance weight vector vi for each batch will be up-
dated based on the fixed wi by solving the following problem:

vt+1
i = argmin

vi

ni∑
j=1

vijL(yij , g(wt+1
i ,xij))− λ

ni∑
j=1

vij

(10)

Algorithm 1: DSPL ALGORITHM

Input: X ∈ Rp×n, y ∈ Rn, λ0 ∈ R, τλ ∈ R, µ ∈ R
Output: solutionw(t+1), v(t+1)

1 Initializew0
i = 1, v0

i = 1
2 Choose εL > 0, εr > 0, εs > 0, λ← λ0, t← 0
3 repeat
4 k ← 0
5 repeat
6 zk+1 ← 1

m

∑m
i=1(w

k+1
i + 1

ρ
αki )

7 Update variableswk+1
i in parallel, for ∀i = 1 . . .m

8 wk+1
i ← argmin fi(wi,vi)+

9 [αki ]
T (wi−zk)+ ρ

2
‖wi−zk‖22

10 Update dual αk+1
i ← αki + ρ(wk+1

i − zk+1) in parallel
11 Update primal and dual residuals rk+1 and sk+1.
12 k ← k + 1

13 until ‖rk+1‖22 < εr and ‖sk+1‖22 < εs

14 vt+1
i ← 1

(
L
(
yij , g(w

t+1
i ,xij)

)
< λ

)
, for ∀i = 1 . . .m

15 if λ < τλ then
16 λ← λ ∗ µ
17 else
18 λ← τλ
19 t← t+ 1

20 until ‖Lt+1 − Lt‖2 < εL
21 return zt+1, vt+1

For the above problem in Equation (10), we always obtain
the following closed-form solution:

vt+1
i =1

(
L
(
yij , g(w

t+1
i ,xij)

)
< λ

)
(11)

where 1(·) is the indicator function whose value equals to one
when the condition L

(
yij , g(w

t+1
i ,xij)

)
< λ is satisfied; oth-

erwise, its value is zero.
The details of algorithm DSPL are presented in Algorithm 1.

In Lines 1-2, the variables and parameters are initialized. With
the variables vi fixed, the other variables are optimized in Lines
5-13 based on the result of consensus ADMM, in which both
the model weights wi and Lagrangian multipliers αi can be
updated in parallel for each batch. Note that if no closed-form
can be found for Equation (6), the updating of wi is the most
time-consuming operation in the algorithm. Therefore, updat-
ingwi in parallel can significantly improve the efficiency of the
algorithm. The variable vi for each batch is updated in Line 14,
with the variable wi fixed. In Lines 15-18, the parameter λ is
enlarged to include more data instances into the training set. τλ
is the maximum threshold for λ and µ is the step size. The al-
gorithm will be stopped when the Lagrangian is converged in
Line 20. The following two alternative methods can be applied
to improve the efficiency of the algorithm: 1) dynamically up-
date the penalty parameter ρ after Line 11. When r > 10s, we
can update ρ ← 2ρ. When 10r < s, we have ρ ← ρ/2. 2)
Move the update of variable vi into the consensus ADMM step
after Line 9. This ensures that the instance weights are updated
every time the model is updated, so that the algorithm quickly
converges. However, no theoretical convergence guarantee can
be made for the two solutions, although in practice they do al-
ways converge.



4 Theoretical Analysis
In this section, we will prove the convergence of the proposed
algorithm. Before we start to prove the convergence of Algo-
rithm 1, we make the following assumptions regarding our ob-
jective function and penalty parameter ρ:
Assumption 1 (Gradient Lipchitz Continuity). There exists a
positive constant ϕi for objective function fi(wi) of each batch
with the following properties:

‖Owi
fi(xi)− Owi

fi(yi)‖ ≤ ϕi‖xi − yi‖,
∀xi,yi, i = 1, . . . ,m

(12)

Assumption 2 (Lower Bound). The objective function in prob-
lem (3) has a lower bound B as follows:

B = min
wi,vi,z

{ m∑
i=1

fi(wi,vi) + ‖z‖22

}
> −∞ (13)

Assumption 3 (Penalty Parameter Constraints). For ∀i =
1 . . .m, the penalty parameter ρi for each batch is chosen in
accord with the following constraints:

• For ∀i, the subproblem (6) of variable wi is strongly con-
vex with modulus γi(ρi).

• For ∀i, we have ρiγi(ρi) > 2ϕ2
i and ρi ≥ ϕi.

Note that when ρi increases, subproblem (6) will be eventu-
ally become strongly convex with respect to variable wi. For
simplicity, we will choose the same penalty parameter ρ for all
the batches with ρ = maxi(ρi). Based on these assumptions,
we can draw the following conclusions.
Lemma 1. Assume the augmented Lagrangian format of op-
timization problem (3) satisfies Assumption 1, the augmented
Lagrangian L has the following property:

L({wk+1
i }, zk+1,αk+1) ≤ L({wk

i }, zk,αk) (14)

Proof. Since the the objective function fi(wi) for each batch
is gradient Lipchitz continuous with a positive constant ϕi, the
Lagrangian in Equation (5) has the following property accord-
ing to Lemma 2.2 in [Hong et al., 2016]:

L({wk+1
i }, zk+1,αk+1)− L({wk

i }, zk,αk)

≤
m∑
i=1

(
ϕ2
i

ρ
− γi(ρ)

2

)
‖wk+1

i −wk
i ‖

2
2 −

γ

2
‖zk+1 − zk‖22

(a)

≤ −γ
2
‖zk+1 − zk‖22 ≤ 0

(15)
where γ = mρ > 0. The inequality (a) follows from Assump-

tion 2, namely that ργi(ρ) > 2ϕ2
i , so we have

(
ϕ2

i

ρ −
γi(ρ)
2

)
<

0.

Lemma 2. Assume the augmented Lagrangian of problem
(3) satisfies Assumptions 1-3, the augmented Lagrangian L is
lower bounded as follows:

lim
k→∞

L({wk+1
i }, zk+1,αk+1) ≥ B (16)

where B is the lower bound of the objective function in problem
(3).

Proof. Due to the gradient Lipchitz continuity assumption, we
have the following optimality condition for the wi update step
in Equation (6):

Owi
fi(w

k+1
i ) +αki + ρ(wk+1

i − zk+1) = 0, ∀i = 1 . . .m
(17)

Combined with the update of the Lagrangian multipliers αi in
Equation (8), we have

Owifi(w
k+1
i ) = −αk+1

i , ∀i = 1 . . .m (18)

The augmented Lagrangian can be represented as:

L({wk+1
i }, zk+1,αk+1)

(a)
= ‖zk+1‖22 +

m∑
i=1

(
fi(w

k+1
i ) + Owi

fi(w
k+1
i )·

(zk+1 −wk+1
i ) +

ρ

2
‖wk+1

i − zk+1‖22

)
(b)

≥ ‖zk+1‖22 +
m∑
i=1

fi(z
k+1)

(c)

≥ B

(19)
Equation (a) follows from Equation (19) and the inequality (b)
comes from the Lipschitz continuity property in Assumption
1. The inequality (c) follows from the lower bound property in
Assumption 2.

Theorem 3. The Algorithm 1 converges when Assumptions 1-3
are all satisfied.

Proof. In Lemmas 1 and 2, we proved that the Lagrangian is
monotonically decreasing and has a lower bound during the it-
erations of ADMM. Now we will prove that the same proper-
ties hold for the entire algorithm after updating variable v and
parameter λ.

L({wt+1},vt+1, zt+1,αt+1;λt+1)

(a)

≤ L({wt},vt+1, zt,αt;λt+1)
(b)

≤ L({wt},vt, zt,αt;λt+1)

=L({wt},vt, zt,αt;λt) + (λt − λt+1)

m∑
i=1

ni∑
j=1

vtij

(c)

≤ L({wt},vt, zt,αt;λt)

Inequality (a) follows Lemma 1 and inequality (b) follows the
optimization step in Line 14 in Algorithm 1. Inequality (c)
follows from the fact that λ increases monotonically so that
λt ≤ λt+1. As L({wt+1}, zt+1,αt+1) for some constant val-
ues of v and λ has a lower bound B, we can easily prove that
L({wt+1},vt+1, zt+1,αt+1;λt+1) ≥ B + C − τλn, where
C is a constant and n is the size of the entire dataset. There-
fore, the Lagrangian L is convergent. According to the stop
condition for Algorithm 1, the algorithm converges when the
Lagrangian L is converged.

5 Experimental Results
In this section, the performance of the proposed algorithm
DSPL is evaluated for both synthetic and real-world datasets in



Table 2: Regression Coefficient Recovery Performance for
Different Corrupted Batches

4/10 5/10 6/10 7/10 8/10 9/10

TORR 0.093 0.109 0.088 0.086 0.079 0.083
TORR25 0.174 0.165 0.189 0.214 0.216 0.241
RLHH 0.635 0.619 0.670 0.907 0.851 0.932
DRLR 0.014 0.131 0.222 0.274 0.304 0.346
SPL 0.038 0.047 0.047 0.044 0.053 0.064

DSPL 0.030 0.034 0.039 0.036 0.041 0.045

robust regression task. After the experimental setup has been
introduced in Section 5.1, we present the results for the regres-
sion coefficient recovery performance with different settings
using synthetic data in Section 5.2, followed by house rental
price prediction evaluation using real-world data in Section 5.3.
All the experiments were performed on a 64-bit machine with
an Intel(R) Core(TM) quad-core processor (i7CPU@3.6GHz)
and 32.0GB memory. Details of both the source code and the
datasets used in the experiment can be downloaded here1.

5.1 Experimental Setup

Datasets and Labels
The datasets used for the experimental verification were com-
posed of synthetic and real-world data. The simulation sam-
ples were randomly generated according to the model y(i) =
[X(i)]Tw∗ + u

(i) + ε(i) for each mini-batch, where w∗ rep-
resents the ground truth coefficients and u(i) the adversarial
corruption vector. ε(i) represents the additive dense noise for
the ith batch, where ε(i)j ∼ N (0, σ2). We sampled the re-
gression coefficients w∗ ∈ Rp as a random unit norm vector.
The covariance data X(i) for each mini-batch was drawn inde-
pendently and identically distributed from xi ∼ N (0, Ip) and
the uncorrupted response variables were generated as y(i)

∗ =[
X(i)

]T
w∗ + ε(i). The corrupted response vector for each

mini-batch was generated as y(i) = y
(i)
∗ +u(i), where the cor-

ruption vector u(i) was sampled from the uniform distribution
[−5‖y(i)

∗ ‖∞, 5‖y(i)
∗ ‖∞]. The set of uncorrupted points was se-

lected as a uniformly random subset of [ni] for each batch.
The real-world datasets utilized consisted of house rental

transaction data from two cities, New York City and Los Ange-
les listed on the Airbnb2 website from January 2015 to October
2016. These datasets can be publicly downloaded3. For the
New York City dataset, the first 321,530 data samples from Jan-
uary 2015 to December 2015 were used as the training data and
the remaining 329,187 samples from January to October 2016
as the test data. For the Los Angeles dataset, the first 106,438
samples from May 2015 to May 2016 were used as training
data, and the remaining 103,711 samples as test data. In each
dataset, there were 21 features after data preprocessing, includ-
ing the number of beds and bathrooms, location, and average
price in the area.

1https://goo.gl/cis7tK
2https://www.airbnb.com/
3http://insideairbnb.com/get-the-data.html

Evaluation Metrics
For the synthetic data, we measured the performance of the
regression coefficient recovery using the averaged L2 error
e = ‖ŵ−w∗‖2, where ŵ represents the recovered coefficients
for each method and w∗ represents the ground truth regression
coefficients. For the real-world dataset, we used the mean ab-
solute error (MAE) to evaluate the performance for rental price
prediction. Defining ŷ and y as the predicted price and ground
truth price, respectively, the mean absolute error between ŷ and
y can be presented as MAE(ŷ,y) = 1

n

∑n
i=1

∣∣ŷi − yi∣∣, where
yi represents the label of the ith data sample.

Comparison Methods
We used the following methods to compare the performance of
the robust regression task: Torrent (Abbr. TORR) [Bhatia et al.,
2015], which is a hard-thresholding based method that includes
a parameter for the corruption ratio. As this parameter is hard to
estimate in practice, we opted to use a variant, TORR25, which
represents a corruption parameter that is uniformly distributed
across a range of±25% off the true value. We also used RLHH
[Zhang et al., 2017b] for the comparison, which applies a re-
cently proposed robust regression method based on heuristic
hard thresholding with no additional parameters. This method
computes the regression coefficients for each batch, and av-
erages them all. The DRLR [Zhang et al., 2017a] algorithm,
which is a distributed robust learning method specifically de-
signed to handle large scale data with a distributed robust con-
solidation. The traditional self-paced learning algorithm (SPL)
[Kumar et al., 2010] with the parameter λ = 1 and the step size
µ = 1.1 was also compared in our experiment. For DSPL, we
used the same settings as for SPL with the initial λ0 = 0.1 and
τλ = 1. All the results from each of these comparison methods
were averaged over 10 runs.

5.2 Robust Regression in Synthetic Data
Recovery Coefficients Recovery
Figure 1 shows the coefficient recovery performance for dif-
ferent corruption ratios in uniform distribution. Specifically,
Figures 1(a) and 1(b) show the results for a different number of
features with a fixed data size. Looking at the results, we can
conclude: 1) Of the six methods tested, the DSPL method out-
performed all the competing methods, including TORR, whose
corruption ratio parameter uses the ground truth value. 2) Al-
though DRLR turned in a competitive performance when the
data corruption level was low. However, when the corruption
ratio rose to over 40%, the recovery error is increased dramati-
cally. 3) The TORR method is highly dependent on the corrup-
tion ratio parameter. When the parameter is 25% different from
the ground truth, the error for TORR25 was over 50% com-
pared to TORR, which uses the ground truth corruption ratio. 4)
When the feature number is increased, the average error for the
SPL algorithm increased by a factor of four. However, the re-
sults obtained for the DSPL algorithm varied consistently with
the corruption ratio and feature number. The results presented
in Figures 1(a) and 1(c) conform that the DSPL method consis-
tently outperformed the other methods for larger datasets, while
still achieving a close recovery of the ground truth coefficient.

Performance on Different Corrupted Batches
The regression coefficient recovery performance for different
numbers of corrupted batches is shown in Table 2, ranging from
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Figure 1: Regression coefficient recovery performance for different corruption ratios.

New York City (Corruption Ratio)

10% 30% 50% 70% 90% Avg.

TORR 3.970±0.007 4.097±0.199 5.377±2.027 7.025±3.379 7.839±3.435 5.662±1.809
TORR25 3.978±0.012 4.207±0.324 5.885±2.615 7.462±3.569 8.369±3.675 5.980±2.039
RLHH 3.965±0.000 4.244±0.544 5.977±2.543 7.525±3.491 8.463±3.646 6.034±2.045
DRLR 3.963±0.000 4.026±0.089 5.884±2.692 7.350±3.469 8.325±3.669 5.908±1.984
SPL 3.979±0.006 4.141±0.199 5.185±1.578 6.413±2.562 7.283±2.892 5.400±1.447

DSPL 3.972±0.007 4.020±0.085 4.123±0.198 5.291±2.086 6.444±2.997 4.770±1.075
Los Angeles (Corruption Ratio)

10% 30% 50% 70% 90% Avg.

TORR 3.991±0.001 4.035±0.067 5.666±2.754 7.569±4.098 8.561±4.170 5.964±2.218
TORR25 3.993±0.003 4.103±0.147 5.986±3.062 7.834±4.181 8.930±4.338 6.169±2.346
RLHH 3.992±0.000 4.023±0.064 6.224±3.198 8.013±4.179 9.091±4.317 6.268±2.352
DRLR 3.990±0.001 4.016±0.031 6.471±3.552 8.147±4.246 9.197±4.341 6.364±2.434
SPL 3.994±0.004 4.135±0.159 5.432±2.097 6.856±3.109 7.857±3.435 5.655±1.761

DSPL 3.992±0.021 4.034±0.137 4.510±0.599 5.717±2.237 6.943±3.194 5.062±1.238

Table 3: Mean Absolute Error for Rental Price Prediction

four to nine corrupted batches out of the total of 10 batches.
Each corrupted batch used in the experiment contains 90% cor-
rupted samples and each uncorrupted batch has 10% corrupted
samples. The results are shown for the averaged L2 error in
10 different synthetic datasets with randomly ordered batches.
Looking at the results shown in Table 2, we can conclude: 1)
When the ratio of corrupted batches exceeds 50%, DSPL out-
performs all the competing methods with a consistent recov-
ery error. 2) DRLR performs the best when the mini-batch is
40% corrupted, although its recovery error increases dramati-
cally when the number of corrupted batch increases. 3) SPL
turns in a competitive performance for different levels of cor-
rupted batches, but its error almost doubles when the number
of corrupted batches increases from four to nine.

Analysis of Parameter λ
Figure 2 show the relationship between the parameter λ and
the coefficient recovery error, along with the corresponding La-
grangian L. This result is based on the robust coefficient recov-
ery task for a 90% data corruption setting. Examining the blue
line, as the parameter λ increases, the recovery error contin-
ues to decrease until it reaches a critical point, after which it
increases. These results indicate that the training process will

keep improving the model until the parameter λ becomes so
large that some corrupted samples become incorporated into
the training data. In the case shown here, the critical point is
around 1.0. The red line shows the value of the Lagrangian L
in terms of different values of the parameter λ, leading us to
conclude that: 1) the Lagrangian monotonically decreases as
λ increases. 2) The Lagrangian decreases much faster once λ
reaches a critical point, following the same pattern as the re-
covery error shown in blue line.

5.3 House Rental Price Prediction
To evaluate the effectiveness of our proposed method in a real-
world dataset, we compared its performance for rental price
prediction for a number of different corruption settings, ranging
from 10% to 90%. The additional data corruption was sampled
from the uniform distribution [-0.5yi, 0.5yi], where yi denotes
the price value of the ith data point. Table 3 shows the mean
absolute error for rental price prediction and its correspond-
ing standard deviation over 10 runs for the New York City and
Los Angeles datasets. The results indicate that: 1) The DSPL
method outperforms all the other methods for all the different
corruption settings except when the corruption ratio is less than
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Figure 2: Relationship between parameter λ and coefficient recovery
error and the corresponding Lagrangian.

30%, and consistently produced with the most stable results
(smallest standard deviation). 2) Although the DRLR method
performs the best when the corruption ratio is less than 30%,
the results of all the methods are very close. Moreover, as the
corruption ratio rises, the error for DRLR increases dramati-
cally. 3) SPL has a very competitive performance for all the
corruption settings but is still around 12% worse than the new
DSPL method proposed here, which indicates that considering
the data integrally produces a better performance than can be
achieved by breaking up the data into batches and treating them
separately.

6 Conclusion
In this paper, a distributed self-paced learning algorithm
(DSPL) is proposed to extend the traditional SPL algorithm to
its distributed version for large scale datasets. To achieve this,
we reformulated the original SPL problem into a distributed
setting and optimized the problem of treating different mini-
batches in parallel based on consensus ADMM. We also proved
that our algorithm can be convergent under mild assumptions.
Extensive experiments on both synthetic data and real-world
rental price data demonstrated that the proposed algorithms are
very effective, outperforming the other comparable methods
over a range of different data settings.
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