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Abstract—For node level graph encoding, a recent important
state-of-art method is the graph convolutional networks (GCN),
which nicely integrate local vertex features and graph topology in
the spectral domain. However, current studies suffer from several
drawbacks: (1) graph CNNs relies on Chebyshev polynomial
approximation which results in oscillatory approximation at
jump discontinuities; (2) Increasing the order of Chebyshev
polynomial can reduce the oscillations issue, but also incurs
unaffordable computational cost; (3) Chebyshev polynomials
require degree Ω(poly(1/ε)) to approximate a jump signal such
as |x|, while rational function only needs O(poly log(1/ε)) [1], [2].
However, it’s non-trivial to apply rational approximation without
increasing computational complexity due to the denominator.

In this paper, the superiority of rational approximation is
exploited for graph signal recovering. RatioanlNet is proposed
to integrate rational function and neural networks. We show
that rational function of eigenvalues can be rewritten as a
function of graph Laplacian, which can avoid multiplication
by the eigenvector matrix. Focusing on the analysis of ap-
proximation on graph convolution operation, a graph signal
regression task is formulated. Under graph signal regression
task, its time complexity can be significantly reduced by graph
Fourier transform. To overcome the local minimum problem of
neural networks model, a relaxed Remez algorithm is utilized to
initialize the weight parameters. Convergence rate of RatioanlNet
and polynomial based methods on jump signal is analyzed
for a theoretical guarantee. The extensive experimental results
demonstrated that our approach could effectively characterize
the jump discontinuities, outperforming competing methods by
a substantial margin on both synthetic and real-world graphs.

I. INTRODUCTION

Effective information analysis generally boils down to the ge-
ometry of the data represented by a graph. Typical applications
include social networks [3], transportation networks [4], spread
of epidemic disease [5], brain’s neuronal networks [6], gene
data on biological regulatory networks [7], telecommunication
networks [8], knowledge graph [9], which are lying on non-
Euclidean graph domain. To describe the geometric structures,
graph matrices such as adjacency matrix or graph Laplacian
can be employed to reveal latent patterns.

In recent years, many problems are being revisited with
deep learning tools. Convolutional neural networks(ConvNets)
emerging in recent years are at the heart of deep learning,
and the most prominent strain of neural networks in research.
ConvNets have revolutionized computer vision [10], natural

Fig. 1: Rational(rat) and polynomial(poly) approximation
for several jump functions(func). Top left:

√
|x− 0.5|; top

right: |x − 0.5|; bottom left: x
10|x−0.5|+1 ; bottom right:

max(0.5, sin(x+ x2))− x
20

language processing [11], computer audition [12], reinforce-
ment learning [13], [14], and many other areas. However,
ConvNets are designed for grid data such as image, which
belongs to the Euclidean domain. Graph data is non-Euclidean
which makes it difficult to employ typical ConvNets. To
bridge the gap, Bruna et al. [15] [16] generalized spectral
convolutional operation which requires expensive steps of
spectral decomposition and matrix multiplication. Hammond
et al. [17] first introduced truncated Chebyshev polynomial
for estimating wavelet in graph signal processing. Based on
this polynomial approximation, Defferrard et al. [18] designed
ChebNet which contains a novel neural network layer for
the convolution operator in the spectral domain. Kipf and
Welling [19] simplified ChebNet by assuming the maximum
of eigenvalues is 2 and fixing the order to 1, which boosts
both effectiveness and efficiency. Li et al. [20] found that this
simplified ChebNet is an application of Laplacian smoothing,
which implies that current studies are only effective on the
smooth signal.

Current studies on graph ConvNet heavily rely on polynomial
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approximation, which makes it difficult to estimate jump
signals. Fig. 1 shows the behaviors of polynomial and rational
function on jump discontinuity: rational approximation fits
the functions considerably better than polynomials. It is
widely recognized that (1) polynomial approximation suffers
from Gibbs phenomenon, which means polynomial function
oscillate and overshoot near discontinuities [21]; (2) Applying
a higher order of polynomials could dramatically reduce the
oscillation, but also incurs an expensive computational cost.
(3) Polynomials require degree Ω(poly(1/ε)) to approximate
functions near singularities and on an unbounded domain,
while rational functions only need O(poly log(1/ε)) to achieve
ε-close [1], [2]. However, it is non-trivial to apply rational
approximation. Polynomial-based method can easily transfer
the function on eigenvalues to the same function on graph
Laplacian so that matrix multiplication by eigenvector can be
avoided. It is not easy for rational approximation to do so due
to the additional denominator.

In this paper, the advantage of the rational function in approx-
imation is transferred to spectral graph domain. Specifically, we
propose a rational function based neural networks(RationalNet),
which can avoid matrix multiplication by eigenvectors. To
alleviate the local minimum problem of the neural network,
a relaxed Remez algorithm is employed for parameter initial-
ization. Our theoretical analysis shows that rational functions
converge much faster than polynomials on jump signal. In a
nutshell, the key innovations are:
• Propose a neural network model based on rational

function for recovering jump discontinuities: To esti-
mate the jump signal, our proposed method integrates
rational approximation and spectral graph operation to
avoid matrix multiplication by eigenvectors. For graph
signal regression task, expensive matrix inversion can be
circumvented by graph Fourier transform.

• Develop an efficient algorithm for model parameters
optimization: Remez algorithm is theoretically optimal,
but it is often not practical especially when approximating
discrete signal. To alleviate this issue, the stopping rules
of Remez algorithm are relaxed to initialize the neural
networks parameters.

• Provide theoretical analysis for the proposed method
on jump signal: For understanding the behaviors of
polynomial and rational function on jump discontinuities, a
uniform representation is proposed to analyze convergence
rate regarding the order number theoretically.

• Conducting extensive experiments for performance
evaluations1: The proposed method was evaluated on
synthetic and real-world data. Experimental results demon-
strate that the proposed approach runs efficiently and
consistently outperforms the best of the existing methods.

The rest of the paper is organized as follows. Section II
reviews existing work in this area. Necessary preliminary
is presented in section III. Section IV elaborates a rational
function based model for graph signal regression task. Section

1The code and datasets will be released after the acceptance for replication

V presents algorithm description and theoretical analysis. In
Section VI, experiments on synthetic and real-world data are
analyzed. This paper concludes by summarizing the study’s
important findings in Section VII.

II. RELATED WORK

The proposed method draws inspiration from the field of
approximation theory, spectral graph theory and recent works
using neural networks. In what follows, we provide a brief
overview of related work in these fields.

A. Approximation theory

In mathematics, approximation theory is concerned with how
functions can best be approximated with simpler functions, and
with quantitatively characterizing the errors introduced thereby.
One problem of particular interest is that of approximating a
function in a computer mathematical library, using operations
that can be performed on the computer or calculator, such that
the result is as close to the actual function as possible. This
is typically done with polynomial or rational approximations.
Polynomials are familiar and comfortable, but rational functions
seem complex and specialized, and rational functions are more
powerful than polynomials at approximating functions near
singularities and on unbounded domains. Basic properties of
rational function are described in books of complex analysis
[21]–[31].

B. Spectral graph theory

Spectral graph theory is the study of the properties of a graph
in relationship to the characteristic polynomial, eigenvalues,
and eigenvectors of matrices associated with the graph, such
as its adjacency matrix or Laplacian matrix [32]–[34]. Many
graphs and geometric convolution methods have been proposed
recently. The spectral convolution methods ( [15], [18], [19],
[35]) are the mainstream algorithm developed as the graph
convolution methods. Because their theory is based on the graph
Fourier analysis ( [36], [37]). The polynomial approximation is
firstly proposed by [17]. Inspired by this, graph convolutional
neural networks (GCNNs) ( [18]) is a successful attempt
at generalizing the powerful convolutional neural networks
(CNNs) in dealing with Euclidean data to modeling graph-
structured data. Kipf and Welling proposed a simplified type
of GCNNs [19], called graph convolutional networks (GCNs).
The GCN model naturally integrates the connectivity patterns
and feature attributes of graph-structured data and outperforms
many state-of-the-art methods significantly. Li et al. [20] found
that GCN is actual an application of Laplacian smoothing,
which is inconsistent with GCN’s motivation. In sum, this
thread of work calculates the average of vertexes within Nth-
order neighbors.

In this paper, we focus on the effectiveness of approximation
technique on graph signal. Under graph signal regression task,
the superiority of rational function beyond polynomial function
is analyzed, and a rational function based neural network is
proposed.



III. PRELIMINARIES

We focus processing graph signals defined on undirected
graphs G = (V, E ,W), where V is a set of n vertexes, E
represents edges andW = [wij ] ∈ {0, 1}n×n is an unweighted
adjacency matrix. A signal x : V → R defined on the nodes
may be regarded as a vector x ∈ Rn. Combinatorial graph
Laplacian [32] is defined as L = D−W ∈ Rn×n where D is
degree matrix.

As L is a real symmetric positive semidefinite matrix, it
has a complete set of orthonormal eigenvectors and their
associated ordered real nonnegative eigenvalues identified as
the frequencies of the graph. The Laplacian is diagonalized
by the Fourier basis Uᵀ: L = U Λ Uᵀ where Λ is the
diagonal matrix whose diagonal elements are the corresponding
eigenvalues, i.e., Λii = λi. The graph Fourier transform of
a signal x ∈ Rn is defined as x̂ = Uᵀ x ∈ Rn and its
inverse as x = U x̂ [36]–[38]. To enable the formulation of
fundamental operations such as filtering in the vertex domain,
the convolution operator on graph is defined in the Fourier
domain such that f1 ∗ f2 = U [(Uᵀ f1)� (Uᵀ f2)], where �
is the element-wise product, and f1/f2 are two signals defined
on vertex domain. It follows that a vertex signal f2 = x is
filtered by spectral signal f̂1 = Uᵀ f1 = g as:

g ∗x = U [g(Λ)� (Uᵀ f2)] = U g(Λ) Uᵀ x.

Note that a real symmetric matrix L can be decomposed as L =
U Λ U−1 = U Λ Uᵀ since U−1 = Uᵀ . D. K. Hammond et al.
and Defferrard et al. [17], [18] apply polynomial approximation
on spectral filter g so that:

g ∗x = U g(Λ) Uᵀ x

≈U
∑
k

θkTk(Λ̃) Uᵀ x (Λ̃ =
2

λmax
Λ− IN)

=
∑
k

θkTk(L̃)x (U Λk Uᵀ = (U Λ Uᵀ)k)

Kipf and Welling [19] simplifies it by:

g ∗x
≈θ0 IN x+ θ1L̃x (expand to 1st order)

=θ0 IN x+ θ1(
2

λmax
L− IN))x (L̃= 2

λmax
L− IN))

=θ0 IN x+ θ1(L− IN))x (λmax=2)

=θ0 IN x− θ1 D- 12 A D- 12 x (L=IN−D- 1
2 A D- 1

2 )

=θ0(IN + D- 12 A D- 12 )x (θ0=−θ1)

=θ0(D̃
− 1

2 ÃD̃
− 1

2 )x (renormalization:Ã=A+ IN,

D̃ii=
∑
j Aij),

rewrite the above GCN in matrix form: gθ ∗X ≈
(D̃
− 1

2 ÃD̃
− 1

2 )XΘ, which leads to symmetric normalized Lapla-
cian with raw feature. GCN has been analyzed GCN in [20]

using smoothing Laplacian [39]: y = (1−γ)xi+γ
∑
j
ãij
di
xj =

xi−γ(xi−
∑
j
ãij
di
xj),where γ is a weight parameter between

the current vertex xi and the features of its neighbors xj , di is
degree of xi, and y is the smoothed Laplacian. This smoothing
Laplacian has a matrix formïijŽ

Y = x− γD̃
−1

L̃x

= (IN−D̃
−1

L̃)x (γ = 1)

= (IN−D̃
−1

(D̃− Ã))x (L̃ = D̃− Ã)

= D̃
−1

Ãx.

The above formula is random walk normalized Laplacian as
a counterpart of symmetric normalized Laplacian. Therefore,
GCN is nothing but a first-order Laplacian smoothing which
averages neighbors of each vertex.

IV. MODEL DESCRIPTION

This section formally defines the task of graph signal
recovering and then describes our proposed RationalNet which
aims to characterize the jump signal in spectral domain.

A. Problem Setting
All the related works integrate graph convolution estimator

and fully-connected neural layers for a classification task. This
classification can be summarized as:

Y = f(G, x)Θ, (1)

where Θ indicates the parameters of normal neural network
layers connecting the output of f and the label Y , such as fully-
connected layers and softmax layers for classification. And
f is a neural network layer implemented by approximation
techniques. However, whether the success is due to the neural
networks(Θ) or the convolution approximation method(f )
remains unknown. To focus on the analysis of approximation
on f , a graph signal regression task is proposed to evaluate the
performance of the convolution approximators f . Regression
task directly compares the label and the output of f , removing
the distraction of Θ.

Given a graph G, raw feature x, and training signal on the
part of vertexes, Ytrain, our goal is to recover signal values,
Ytest, on test nodes. Formally, we want to find a f(·) so that:

Y = f(G, x).

If the raw features are good enough for the regression task,
whether the effectiveness is due to f or x is difficult to verify.
Therefore, one reasonable option for x is the uniform signal
in spectral domain. Specifically, x =

∑
i Ui and x̂ = Uᵀ x =

1 = {1, 1, ..., 1}, which means that x represents eigenbasis of
graph structure in spectral domain. Each entry of vector x̂i
indicates one eigenvector in the spectral domain. The physical
meaning of the convolution operation is how to select eigenbasis
in spectral domain to match the graph signal Y . Representing
G with graph Laplacian, the regress task can be rewritten as:

Y = f(L,U) = U gθ(Λ) Uᵀ
∑
i

U, (2)



where gθ is the spectral filter to approximate.

B. RationalNet

Similar to polynomial approximation on graph domain such
as ChebNet [18] or GCN [19], RationalNet approximates the
spectral filter by a widely used type of rational function, i.e.,
Padé approximator, which is defined as:

R(x) =

∑m
i=0 ψix

i∑n
j=0 φjx

j
, φ0 = 1, φj , ψi ∈ R. (3)

Applying to graph convolution operator, we have:

gθ ∗x = U gθ Uᵀ x (convolution theorem)

≈U

∑m

i=0
ψiΛ̃

i

1 +
∑n

j=1
φjΛ̃

j
Uᵀ x (Λ̃ =

Λ

λmax
)

= U
P(Λ)

Q(Λ)
Uᵀ x, (define P and Q)

where Λ represents a diagonal matrix whose entries are
eigenvalues, gθ = R, and θ = {ψ, φ}. The division P

Q is
element-wise. The inverse of matrix Q(x) is equivalent to
applying reciprocal operation on its diagonal entries, so the
equation can be rewritten as:

U P(Λ) Q(Λ)−1 Uᵀ x.

Applying matrix rules, it’s easy to have:

= U P(Λ) Uᵀ U Q(Λ)−1 Uᵀ x (Uᵀ=U−1,Uᵀ U=IN)

=
[
U P(Λ) Uᵀ

][
U Q(Λ)−1 Uᵀ

]
x

=
[
P(U Λ Uᵀ)

][
U Q(Λ)−1 Uᵀ

]
x (U Λk Uᵀ=(U Λ Uᵀ)k)

=
[
P(U Λ Uᵀ)

][
(Q(Λ) U−1)−1 Uᵀ

]
x (A−1B−1=(BA)−1)

=
[
P(U Λ Uᵀ)

][
(U Q(Λ) U−1)−1

]
x (Uᵀ=U−1)

=
[
P(U Λ Uᵀ)

][
(U Q(Λ) Uᵀ)−1

]
x (Uᵀ=U−1)

=
[
P(U Λ Uᵀ)

][
(Q(U Λ Uᵀ))−1

]
x (U Λk Uᵀ=(U Λ Uᵀ)k)

Since U Λk Uᵀ = (U Λ Uᵀ)k, we can rewrite the equation
above as:

gθ ∗x = P(L) Q(L)−1x, (4)

where P(x) =
∑m
i=0 ψix

i and Q(x) =
∑n
j=0 φjx

j . Note
that P(L) Q(L)−1x = Q(L)−1 P(L)x in our case. Based
on polynomial approximation, RationalNet only adds a in-
verse polynomial function Q(L)−1. Therefore, polynomial
approximation (GCN/ChebNet) on graph is a special case of
RationalNet when Q(L)−1 = I.

Computing inverse of matrix is still of high complexity
O(n3) (GaussâĂŞJordan elimination method) in Eq. 4, espe-
cially for large matrix. This can be avoided by transferring
vertex graph signal and raw features into spectral domain.
Therefore, the Eq. 12 can be rewritten as:

Ŷ =
P(Λ)

Q(Λ)
x̂, (5)

where Ŷ = Uᵀ Y is the graph Fourier transform of graph signal,
and x̂ = Uᵀ x is the graph Fourier transform of raw feature.
By this step, we only need compute reciprocal of eigenvalues,
rather than computing matrix multiplication and inversion at
each update. Eq. 2 can be obtained via left multiplying both
sides of Eq. 2 by transpose of eigenvectors. Note that Eq. 5 is
applicable when there is no other layers between the output Y
and the convolution operation. In contrast, Eq. 4 can be used
not only in regression task like Eq. 2, but also in classification
where there exist additional neural networks as described in Eq.
1. RationalNet has complexity O(|E|) for Eq. 5 and O(|E|3)
for Eq. 4.

C. Relaxed Remez Algorithm for initialization

RationalNet is powerful at approximating a function. How-
ever, it is often stuck in a local optimum due to the neural
network optimization, which makes rational function not always
better than the polynomial approximation. Remez exchange
algorithm [31] is an iterative algorithm used to find simple
approximations to functions. Nevertheless, the drawback of this
minimax algorithm is that the order for optimum is unknown
and the stopping condition is not often practical. To improve
RationalNet’s initialization, a relaxed Remez algorithm is
proposed.

As Theorem 24.1 (equioscillation characterization of best
approximants, [21]) states: Given the order of numerator(m)
and denominator(n), and a real function f that is continuous
in [p, q], there exists a unique best rational approximation
R∗ defined as Eq. 3. This means that the R∗ optimizes the
minimax error:

R∗ = arg min
R

max
x∈[p,q]

|f −R|. (6)

A rational function R is equal to R∗ iff f −R equioscillates
between at least m+n+2 extreme points, or say the error function
attains the absolute maximum value with alternating sign:

f(xd)−R(xd) = (−1)dE, d ∈ [0,m+ n+ 1], (7)

where d indicates the index of data point, and E represents the
max of residuals: E = maxxd |f(xd) − R(xd)|. For rational
function approximation, there is some nonlinearity because
there will be a product of E with φj in the equations. Hence,
these equations need to be solved iteratively. The iteration
formula can be defined by linearizing the equations:

m∑
i=0

ψix
i
d−
[
f (xd)− (−1)dEr

] k∑
j=1

φjx
j
d = f (xd)− (−1)dEr+1,

(8)
where r indicate the iteration index. Eq. 8 is obtained by
neglecting nonlinear terms of the form (Er − Er+1)φjx

j
d in

Eq. 7. This procedure can converge in a reasonable time ( [40]).
Expanding Eq. 8 for all sampled data points x0, x1, ..., xd, it
can be rewritten as:




x00 ... xm0 (Er − y0)x10 ... (Er − y0)xn0 (−1)0

x01 ... xm1 (Er − y0)x11 ... (Er − y0)xn1 (−1)1

x02 ... xm2 (Er − y0)x12 ... (Er − y0)xn2 (−1)2

...

x0K ... xmK (Er − y0)x1K ... (Er − y0)xnK (−1)K





ψ0
ψ1
ψ2
..
ψm
φ1
φ2
φ3
..
φn
Er+1


=


y0
y1
...
yK

 ,

(9)

where K=m+n+1. Starting from an assumed initial guess
Er=0ïijŇ this set of linear equations can be solved for the
unknown ψi, φj and Er+1, when two successive values of Er
are in satisfactory agreement such as |Er+1−Er| is less than 1e-
6. Constructing a rational function with new coefficients, Remez
computes the error residuals. If absolute value of the residuals
δ are not great than |E|, the optimal coefficients are obtained.
Otherwise, Remez calculates the roots of rational function and
constructs a new set of control points by collecting the extremes
in each interval of roots, and repeat the computation of Eq. 8
until residuals δ are not great than |E|. However, this stopping
rule is not often satisfied, which makes the algorithm stuck in
dead loop. Therefore, we add an iteration limit for avoid dead
loop. The relaxed Remez algorithm could be summarized as
follows:
1. Prepare training data
• Specify the degree of interpolating rational function.
• Pick m + n + 2 points from the data points X =
{x0, x1, ..., xm+n+1} with equal interval. Under this
discrete setting, the distances between any neighbors
are considered equal if the data distribution are dense

2. Optimization by equioscillation constraint
• Solve coefficients and E by Eq. 9
• Form a new rational function R with new coefficients
• Calculate residual errors
• Repeat until E converges or |Er+1−Er| is less than 1e-6

3. Check stopping rule
• Calculate residual errors
• Stops if the absolute value of any residual is not

numerically greater than |E|.
• Otherwise, find the n+m+1 roots of the rational function,

and find the points at which the error function attains its
extreme value. Rerun the algorithm with this new set of
training data from the second step.

We have considered an algorithm for obtaining minimax
approximation when the function could be evaluated at any
point inside the interval. In our case, the function is known only
at a set of discrete points, since eigenvalues are not continuous.
However, this problem is no essentially different form the
continuous case if the set of points is rather dense in the target
interval [p, q]. We simply assume that eigenvalue samples are
dense enough, since we often normalized eigenvalues into the
range [0,1], several hundreds of points are thereby sufficient.
For example, our smallest size of the synthetic graph consists
of 500 nodes, so there are 500 eigenvalues distributed in [0,
1], which should be enough for approximation.

If the degree of rational function is large, then the system of
equations could be ill-conditioned. Sometime, the linear system
of equations 9 is singular, which make the solution vector(ψi,
φj , Er+1) under-determined. We traverse all possible m/n pairs
given the maximum of m and n. The relaxed algorithm discards
any m/n if singular matrix error occurs.

We found that the residuals δ are not smaller than |E| for
some m/n pairs, and the algorithm continues to output the
same values. In such case, the algorithm stops if the maximum
and minimum residuals (δmin,max) converge or they satisfy
δ0,1,...,m+n+1 < |E|.

V. ALGORITHM AND THEORETICAL ANALYSIS

This section elaborates algorithm details and analyzes its
convergence rate on jump discontinuity.

A. Algorithm description

The Algorithm 1 first calculate graph Laplacian(line 1) and
spectral decomposition(line 3), and convert vertex signal into
spectral domain by inverse Fourier transform(line 2). From
given m,n, algorithm 1 traverse all possible m/n pairs (line 4).
Picking up m+n+1 points with equal intervals, the optimal error
is calculated (line 10). After convergence, optimal m/n and
ÏĹ i /ÏŢ j are determined (line 11). Then algorithm calculates
the residuals(line 13). If the stopping rule is not satisïňĄed,
decrease the order of denominator or numerator in turns and
repeat the same process, otherwise, output the parameters of
rational function.

With optimal parameters, graph convolution operation is
calculated by rational approximation (line 19). Then we conduct
typical neural networks optimization.

B. Theoretical analysis

This section first represents jump discontinuity using a
function(Eq. 10). Then convergence rate of rational function
on jump discontinuity is analyzed(Theorem V.1). With the help
a Lemma V.2, we prove Theorem V.1. Similarly, convergence
rate of polynomial function(Theorem V.3) is also provided.

We found that fσ=1 = a|x| + bx and fσ=2 = a |x|x + bx
can characterize single jump discontinuity. For example, when
a=b=1/2 and σ=0, f1,2 is ReLU function. It is sign(x) when
a=1 and b=1, and σ=1. Thus, f1,2 rotates or change the angle
between two lines at jump discontinuity based on |x| and x.
These two functions can be rewritten in an uniform formula:

f1,2 = a
|x|

xσ∈{0,1}
+ bx (10)

where a, b ∈ R.

Theorem V.1 (convergence rate of rational approximation
on jump discontinuity). Given n≥5 and b≥1, there exist a
rational function Rn(x) of degree n that satisfies

sup
x∈[−c,c]

|f1,2 −Rn(x)| ≤ Ce−
√
n.

In our proof of Theorem V.1, for n ∈ N, we follow [41]
and define the Newman polynomial: Nn(x) :=

∏n−1
i=1 (x +



Algorithm 1: RationalNet
Input: a graph G = {V, E},
rational function order: m,
graph signal on nodes: Y(i), i ∈ 1, 2, ..., |V|
Output: a rational function with parameters: ψi and phii

1 compute graph Laplacian: L = A−D
2 compute spectral signal by graph Fourier transform:

Ŷ = Uᵀ Y
3 perform eigen decomposition: L = U Λ Uᵀ

4 n ← m
5 // initialize parameters by a relexed Remez
6 repeat
7 Pick m + n + 1 points x0, x1, ..., xm+n+1 from full

data X with equal interval
8 r = 0, Er = 0
9 repeat

10 solve ψ0∼m, φ1∼n, Er+1 . Eq. 8 or 9
11 until Er+1 − Er convergence;
12 form a Padé rational function Rψ,φ with ψ0∼m, φ1∼n
13 compute residues δd = |Ŷ (d)−R(xd)|
14 m ← m-1 or n ← n-1 in turns.
15 until δ convergence or δmin,max < |E|;
16 // initialize a Padé rational function with the above

coefficients
17 repeat
18 form a Padé rational function Rψ,φ with ψ0∼m, φ1∼n

obtained in the above repeat loop
19 R(L)x = P(L) Q(L)−1x . Eq. 4 or 5
20 θ = {ψi, φj}
21 compute the mean error function

L = MSE(R(x)− Y )
22 compute derivatives to update parameters:

θ ← θ + β∇θL, where β is learning rate
23 until MSE converges;

αin), where αn := e−1/
√
n. To approximate jump discon-

tinuity, define An(x) as Newman approximation:An(x) :=

xNn(x)−Nn(−x)
Nn(x)+Nn(−x) .

Lemma V.2. Given n ∈ [5,∞)∩Z, c ∈ [1,+∞), σ ∈ {0, 1}

sup
x∈[−c,c]

∣∣∣∣ |x|xσ − cAn(x/c)

xσ

∣∣∣∣ ≤ 3ce−
√
n. (11)

proof for Lemma 11. If σ=0, left of Eq. 11 is equivalent to∣∣∣|x| − cAn(
x

c
)
∣∣∣ =

∣∣∣c(|x
c
| −An(

x

c
))
∣∣∣ = c

∣∣∣|x
c
| −An(

x

c
)
∣∣∣ .

Since |xc | and An(xc ) are both even, it suffices to consider
the case when 0 ≤ x ≤ c.

For x ∈ [0, cαnn = ce−
√
n], since Nn(x) ≥ Nn(−x) ≥ 0

so that a
cAn(ac ) ≥ 0:

c
∣∣∣|x
c
| −An(

a

c
)
∣∣∣ ≤ c ∣∣∣|x

c
|
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√
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For x ∈ (cαnn = ce−
√
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(Lemma 3.2, Ch. 7, [42])

≤ 2c

e
√
n − 1

3
e
√
n

(
e
√
n

3
≥ e

√
5

3
≈ 3.19
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> 1)
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√
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If σ=1, Following same procedure as σ=0, we have:∣∣∣∣ |x|x − cAn(x/c)

x

∣∣∣∣ ≤ 3ce−
√
n.

proof for Theorem V.1. Applying Lemma 11:

|f1 −R(x)| =
∣∣∣(ax+ b|x|)− (ax+ bcAn(

x

c
))
∣∣∣

=b
∣∣∣|x| − cAn(

x

c
)
∣∣∣ ≤ 3bce−

√
n.

Similarly, we have:

|f2 −R(x)| =
∣∣∣∣(ax+ b

|x|
x

)− (ax+ b
cAn(x/c)

x
))

∣∣∣∣
=b

∣∣∣∣ |x|x − cAn(x/c)

x

∣∣∣∣ ≤ 3bce−
√
n.

In sum,
sup

x∈[−c,c]
|f1,2 −Rn(x)| ≤ Ce−

√
n,

where C=3bc in Theorem V.1

By Bernstein’s theorem [43], polynomials can approximate
a function with:

||x| − Pn(x)| ≤ β

n
,

where Pn(x) is a polynomial function of degree of n, and β ≈
2.801 [44]. Using the same settings for the rational function,
we have a similar result for polynomials:

Theorem V.3 (convergence rate of polynomial approximation
on jump discontinuity). Given n ∈ [5,∞) ∩ Z, c ∈ [1,+∞),
σ ∈ {0, 1}:

sup
x∈[−c,c]

|f1,2 − Pn(x)| ≤ Cβ

n
,

where Pn(x) is a polynomial function of degree n, and C=3bc.



In a nutshell, when the order is large or equal to 5,
polynomial converges linearly regarding the order number,
while rational function converges exponentially.

VI. EVALUATION

This section elaborates evaluation with a detailed analysis
of the behaviors of the proposed method on synthetic and
real-world graphs.

A. Training Setting and Baselines

The input include a graph Laplacian L, a graph signal
residing on each vertex Y , and raw feature x . In a nutshell,
we aims at finding a function f that satisfies Y = f(L, x):

Y = U gθ(Λ) Uᵀ x = gθ(L)x, (12)

where gθ(Λ) is set to be jump function such |x| and sign(x).
In previous works, raw features and filtering signal are fed
into the model to fit the graph signal. However, raw features
have an impact on fitting graph signal, which distracts the
analysis of filtering behaviors. As discussed in Section IV, x is
set to be eigenvector U which is a uniform signal in spectral
domain, so that we can focus on the behaviors of approximation
methods. We compare RationalNet(RNet) against several stat
of art regression models:
• Linear Regression(LR)
• Polynomial Regression(PR) [45]
• Passive Aggressive Regression(PAR) [46]
• LASSO [47]
• Epsilon-Support Vector Regression(SVR) [48]. Three ker-

nels were applied: linear(L), polynomial(P) and RBF(R).
• Ridge Regression(RR) [49]
• Bayesian Ridge Regression(BR) [50],
• Automatic Relevance Determination(ARD) [51]
• Elastic Net(EN) [52]
• Orthogonal Matching Pursuit(OMP) [53]
• SGD Regression
• Huber Regression [54]
• ChebNet [18]. PolyNet is proposed by replacing Cheby-

shev polynomial with normal polynomial.

B. experiments on synthetic data

To validate the effectiveness of RationalNet, we conduct a
simulated test with synthetic data. The task is to recover signal
on the vertexes, which is a regression problem. Specifically,
we generated a graph comprised of several subgroups. The
edge amount for each vertex in the same subgroup is randomly
chosen between 0 and 8, while the links among different
subgroups are sampled between 0 and 3. Experiments were
conducted on a 500-node and a 1000-node graph. Two types
of jump signals are fed into this network structure: |x| and
sign(x). Since all eigenvalues are normalized into range [0, 1],
jump points of |x| and sign(x) are moved into the same range.
Specifically, we used |x − 0.5| and sign(x − 0.5). Detailed
results are shown in Table II and I.

In 1000-node graph test on |x|(first two columns in Table
I), PolyFit achieved the second lowest MSE(0.0016 for S-
ERR). PolyNet’s MSE(0.0016) is the same as that of PolyFit,

Method S-ERR(|x|) V-ERR(|x|) S-ERR(sign(x)) V-ERR(sign(x))
SVR-R .0044±.0000 .0043±.0000 .3840±.0000 .2573±.0000
SVR-L .0165±.0000 .0111±.0000 .3218±.0000 .2799±.0000
SVR-P .0179±.0000 .0131±.0000 .3587±.0000 .2573±.0000
LR .0161±.0000 .0110±.0000 .3211±.0000 .2788±.0000
RR .0160±.0000 .0110±.0000 .3199±.0000 .2786±.0000
LASSO .0157±.0000 .0137±.0000 .5581±.0000 .5087±.0000
EN .0157±.0000 .0137±.0000 .5969±.0000 .5438±.0000
OMP .0161±.0000 .0110±.0000 .3211±.0000 .2788±.0000
BR .0161±.0000 .0110±.0000 .3210±.0000 .2788±.0000
ARD .0161±.0000 .0110±.0000 .3210±.0000 .2788±.0000
SGD .0152±.0000 .0116±.0000 .3191±.0001 .2795±.0003
PAR .2871±.0997 .2740±.1033 1.0370±.8892 .9745±.8418
Huber .0202±.0000 .0123±.0000 .3219±.0000 .2794±.0000
PolyFit .0016±.0000 .0010±.0000 .2057±.0000 .1703±.0000
ChebNet .0021±.0000 1.1904±.0052 .2058± .0067 .2084± .0043
PolyNet .0016±.0000 .0038±.0000 .2011±.0095 .2001±.0056
RNet 5.2971e-6±1.2501e-8 .0001±.00000 .0103±.0001 .0153±.0006

TABLE I: 1000-node graph test: s-err indicates error in spectral
domain, while v-err represents error in vertex domain.

Method S-ERR(|x|) V-ERR(|x|) S-ERR(sign(x)) V-ERR(sign(x))
SVR-R .0043±.0000 .0044±.0000 .2691±.0000 .2867±.0000
SVR-L .0148±.0000 .0131±.0000 .2612±.0000 .2748±.0000
SVR-P .0137±.0000 .0138±.0000 .2784±.0000 .2875±.0000
LR .0140±.0000 .0130±.0000 .2582±.0000 .2734±.0000
RR .0140±.0000 .0130±.0000 .2579±.0000 .2741±.0000
LASSO .0135±.0000 .0137±.0000 .4723±.0000 .4865±.0000
EN .0135±.0000 .0137±.0000 .5260±.0000 .5374±.0000
OMP .0140±.0000 .0130±.0000 .2582±.0000 .2734±.0000
BR .0140±.0000 .0130±.0000 .2581±.0000 .2734±.0000
ARD .0140±.0000 .0130±.0000 .2581±.0000 .2734±.0000
SGD .0135±.0000 .0138±.0000 .2597±.0007 .2764±.0008
PAR .4026±.3980 .3982±.3954 .7412±.5682 .7456±.5029
Huber .0158±.0000 .0135±.0000 .2581±.0000 .2734±.0000
PolyFit .0010±.0000 .0011±.0000 .1488±.0000 .1699±.0000
ChebNet .0044±.0000 .0044±.0000 .2025±.0000 .2115±.0004
PolyNet .0016±.0000 .0016±.0000 .2059±.0000 .2083±.0004
RNet .0001±.0000 .0001±.0000 .0108±.0001 .1479±.0001

TABLE II: 500-node graph test: s-err indicates error in spectral
domain, while v-err represents error in vertex domain.

which shows the power of polynomial regression. Chebyshev
polynomial(ChebNet) dose not improve PolyNet, which implies
that neural network might approximate the best coefficients of
polynomials no matter what type of polynomial is used. LR, RR,
LASSO, EN, OMP, BR, ARD, SGD SVR(L/P) performed at
the same level(0.0015-0.0018). Our method(5e-6) significantly
outperformed all the baselines by a large margin. Both the errors
in spectral domain and vertex domain show the advantage of
RationalNet. The Similarly, PolyFit and PolyNet and SVR(R)
performed better than all the baselines except RationalNet. Our
method still achieves the lowest MSE(0.004619 for S-ERR).
The 500-node graph experiment(Table I)) also demonstrates
the effectiveness of RationalNet.

Regression behaviors on synthetic data is shown in Fig.
2 and 3. Methods (SVR(L), Ridge, OMP, LASSO, Linear
regression, ENet, ARD, Huber, etc.) fitted the |x|(Fig. 2) using a
straight Line, while better baselines(SVR(R)), PolyFit, PolyNet,
ChebNet) approximate the function with curves. RationalNet
almost overlapped with the target function which makes its
MSE very small(5e-6). Similarly, in Fig. 3, the methods using
straight lines(SVR(L), Ridge, OMP, SGD, LASSO, BR, Huber
LR, ENet, ARD) performed relatively bad. Fitting with curves,
PolyFit, PolyNet, ChebNet improved the performance by a
large margin. Similarly, RationalNet overlapped the signal and
achieved the lowest error score.

Since RationalNet initializes parameters by a relaxed Remez
algorithm, we analyze the performance of neural networks
and Remez respectively. As shown in Table III, the first
two rows show the MSE of Remez only. Compared with



Fig. 2: Regression performance comparison on |x|.

Fig. 3: Regression performance comparison on sign(x).

Remez algorithm, RationalNet without Remez initialization(3rd
and 4th lines) performed badly. On the contrary, RationalNet
with Remez initialization(5th and 6th lines) improved the
Remez by 56.26% and 81.39%(7th line) for |x| and sign(x)
separately in spectral domain, which also reduces their MSE
in vertex domain by 9.37% and 14.93%(8th line). This result
illustrates that Remez and RationalNet cannot find the optimum
independently. Therefore, it is reasonable to integrate these
two methods for optimizing the coefficients.

|x| sign(x)
Remez (spectral) 4.531041e-6 0.057233
Remez (vertex) 0.000105 0.109641
RNet w/o Remez (spectral) 0.000145 1.364790
RNet w/o Remez (vertex) 0.000252 0.887602
RNet w/ Remez (spectral) 1.981569e-6 0.010645
RNet w/ Remez (vertex) 9.569891e-5 0.093268
Improved (spectral) 56.26% 81.39%
Improved (vertex) 9.37% 14.93%

TABLE III: Remez and RationalNet on 1000-node graph:
MSE improvement in spectral and vertex domain

Method S-ERR(FF) V-ERR(FF) S-ERR(MI) V-ERR(MI)
SVR-R .0364±.0000 .0406±.0000 .0393±.0000 .0358±.0000
SVR-L .0652±.0000 .0599±.0000 .0670±.0000 .0627±.0000
SVR-P .1226±.0000 .1014±.0000 .0518±.0000 .0499±.0000
LR .0640±.0000 .0595±.0000 .0662±.0000 .0621±.0000
RR .0639±.0000 .0595±.0000 .0662±.0000 .0621±.0000
LASSO .2026±.0000 .2030±.0000 .2141±.0000 .2138±.0000
EN .1595±.0000 .1594±.0000 .1609±.0000 .1592±.0000
OMP .0640±.0000 .0595±.0000 .0662±.0000 .0621±.0000
BR .0640±.0000 .0595±.0000 .0662±.0000 .0621±.0000
ARD .0640±.0000 .0595±.0000 .0662±.0000 .0621±.0000
SGD .0639±.0001 .0598±.0000 .0664±.0000 .0622±.0000
PAR .4960±.3273 .4948±.3200 .4255±.4575 .4222±.4588
Huber .0646±.0000 .0597±.0000 .0666±.0000 .0624±.0000
PolyFit .0346±.0000 .0382±.0000 .0384±.0000 .0346±.0000
ChebNet .0468±.0006 .0468±.0006 .2336±.0094 .2336±.0094
PolyNet .0468±.0006 .0468±.0006 .0490±.0049 .0490±.0009
RNet .0064±.0007 .0064±.0007 .0046±.0012 .0046±.0006

TABLE IV: Regression comparison on Fairfax(FF) and
Minnesota(MI) road networks. s-err indicates error in spectral
domain, while v-err represents error in vertex domain.

C. Case study on real-world scenario

In this section, we study a traffic congestion signal on
Minnesota state-level road network 2 and Fairfax county-level
road network VA3 [55]. Specifically, the signal is a high-
pass filtering which can be written as ζ = sign(x−0.5)+1

2 in
Fourier domain. ζ is a threshold function sets the output to 0
when normalized eigenvalues ∈ [0, 0.5), and 1 for ∈ (0.5, 1].
Therefore, this function filter out signal of low frequency. The
physical meaning of the convolutional operation is a weight
function that chooses the eigenbasis(ϕi) to fit the traffic signal
Y . The top line of Fig. 4 shows several examples in eigen space
of Minnesota road networks. First two sub figures are the 2nd
and 3rd eigenvector ϕ1, ϕ2 on vertex domain: ϕ1 emphasizes
the south of Minnesota(red area), while ϕ2 highlights the
capital St. Paul and its biggest city Minneapolis. Note that
the 1st eigenvector ϕ0 is a constant vector for any connected
graph. ϕ1, ϕ2 correspond to λ1, λ1, which represent the first
two lowest frequencies. As these figures show, low frequencies
represent smooth signals, which means that the neighbors of
each node are likely to have similar signal value. By contrast,
high-frequency basis captures non-smooth component as the
3rd and 4th sub figures show: signal values vary frequently in
some areas. Combining top 50% high-frequency eigenbasis,
the last sub figure shows the ζ signal on the graph. In addition,
the degree of non-smoothness of signal regard graph structure
can be evaluated quantitatively by Dirichlet energy( [36]):
Eϕi = ϕᵀ

i Lϕi. Dirichlet energy of examples is shown in
the caption of Fig. 4. Eigenvectors of low frequency(ϕ1,2)
are smooth, so their Dirichlet energies are low. While high-
frequency eigenvectors are less smooth since their Dirichlet
energy is higher(around 4.04). Summing up the top 50% high
frequencies, the Dirichlet energy of ζ in the last sub figure
is very large(15384.10). The bottom line of Fig. 4 shows
similar examples from Fairfax road networks. ϕ1 highlights
Fair City Mall(red area) and the road to this mall, while ϕ2

2https://www.cise.ufl.edu/research/sparse/matrices/Gleich/minnesota.html
3https://github.com/gboeing/osmnx



Fig. 4: Top line: Minnesota road network. From left to right are ϕ1,ϕ2,ϕ1001,ϕ1002, and ζ . Eϕ1=0.00084ïijŇ Eϕ2=0.00207ïijŇ
Eϕ2001

=4.03932ïijŇ Eϕ2002
=4.04661, Eζ=15384.10112. Bottom line: Fairfax road network. From left to right are ϕ1,ϕ2,ϕ701,ϕ702,

and ζ. Eϕ1
=0.00250ïijŇ Eϕ2

=0.00296ïijŇ Eϕ701
=3.82741ïijŇ Eϕ702

=3.81540, Eζ=6376.54224

underlines Fairfax Circle Shopping Center and a residential
neighborhoods nearby. Similarly, ϕ701 and ϕ702 show two non-
smooth graph signals. Summing up top 50% high frequencies,
the 5th sub figure exhibits an extremely non-smooth signal.
Characterizing non-smooth graph signal or high frequencies
is not a trivial task. Therefore, approximating this high pass
filtering is significantly challenging. Table IV shows similar

Fig. 5: Comparison of average running time in seconds.

results as in synthetic experiments: The proposed method
still performed much better(3e-5) than the baselines. PolyFit
achieved the second best level(0.0008), ChebNet, PolyNet and
SVR(RBF) are generally good(0.0039,0.0039 and 0.0055), this
is probably because they fitted the target with curves. The
methods using straight lines have highest level of MSE(around
0.01). The results on another dataset, Fairfax road network,
also show that RationalNet has huge advantage beyond the
baselines.

Fig. 5 shows the comparison of running time on two real-
world networks. Minnesota dataset contains 2642 vertexes,
while Fairfax network consists of 993 nodes. Most baseline

methods are efficient such as LR, RR, LASSO, EN, OMP, BR,
PAR. They finish computing within around 0.01 second on
Minnesota graph and 0.002 second on Fairfax graph. SGD,
PolyFit, and Huber only require 0.02 and 0.01 for Minnesota
and Fairfax network respectively. SVR group performed slower,
but they complete the calculation within 10 seconds for
Minnesota graph and 2 seconds for Fairfax. ARD needs around
15 seconds and 1.4 seconds separately, which is the slowest
baseline. Note that the number for RationalNet and ChebNet
in Fig. 5 is the time for each iteration. RationalNet took 0.159
seconds for one update on Minnesota network, and 0.041
seconds on Fairfax network. In practice, RationalNet often
converges within 300 iterations, which takes less than one
minute for both datasets. Due to the complexity of computation,
it is natural that RationalNet is slower than its counterpart
ChebNet and several baselines. However, it shows that our
algorithm can run reasonably fast in real-world datasets. Our
case study on real-world graph justifies that RationalNet can
accurately estimate the high pass filter within a reasonable
time.

VII. CONCLUSION

In this paper, we have introduced a neural network model
for graph signal recovering. To estimate jump discontinuity,
a rational function is employed due to its powerful ability of
approximation. The proposed method can avoid multiplication
with the eigenvector matrix. With the help of a relaxed Remez
algorithm, RationalNet can identify the optimal configuration.
In theory, RationalNet obtains exponential convergence rate
on jump signal, significantly fast than the polynomial-based
approximation. Experiments on synthetic datasets suggest that
the proposed RationalNet model is capable of model typical
jump function accurately.
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