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ABSTRACT
Network embedding, which aims to learn low-dimensional vec-
tor representations for nodes in a network, has shown promising
performance for many real-world applications, such as node clas-
sification and clustering. While various embedding methods have
been developed for network data, they are limited in their assump-
tion that nodes are correlated with their neighboring nodes with
the same similarity degree. As such, these methods can be sub-
optimal for embedding network data. In this paper, we propose
a new method named SANE, short for Similarity-Aware Network
Embedding, to learn node representations by explicitly considering
different similarity degrees between connected nodes in a network.
In particular, we develop a new framework based on self-paced
learning by accounting for both the explicit relations (i.e., observed
links) and implicit relations (i.e., unobserved node similarities) in
network representation learning. To justify our proposed model, we
perform experiments on two real-world network data. Experiments
results show that SNAE outperforms state-of-the-art embedding
models on the tasks of node classification and node clustering.
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1 INTRODUCTION
Mining large-scale information networks (e.g., social networks,
academic networks) has benefited many real-world applications,
such as friend recommendation and user classification in online
social platforms [11]. In those applications, identifying effective
features play a crucial role, however, involves huge amounts of hu-
man efforts and massive handcrafted feature engineering based on
domain-specific knowledge. To tackle this issue, a line of research on
network embedding [4, 8, 12], which aims to learn low-dimensional
vector representations of nodes, has attracted a lot of attention.
These methods have been shown to be effective in various network
mining tasks (e.g., node classification and clustering).

In particular, existing network embedding techniques aim to
learn node representations by preserving the proximities between
nodes based on their structural properties. To simplify the design,
these approaches assumed the similarities between all pairs of
connected nodes in a network with the same degree. However,
this assumption does not hold in reality where nodes may have
various degrees of similarity with their neighbors. Take the network
between users on Twitter as an example, the followers of a movie
star could come from: i) his/her friends who are most familiar
with this movie star; ii) the people who share similar interests
to the movie star, such as his/her colleagues; iii) or the ordinary
people who are only interested in the movie star, but do not share
similar interests and are personally unrelated. Such difference in
node (user) similarity is expected to have a clear effect on network
representation learning. This leads to the question investigated in
this paper: can we explore different degrees of node similarity to
learn more robust node representations for a network?

To solve the above question, we develop a new embedding frame-
work called Similarity-Aware Network Embedding (SANE), aiming
to learn robust node representations by considering different de-
grees of node similarity in a network. Since the similarity between
different pairs of nodes may be different, each relationship between
the target node and its neighbors should be treated differently dur-
ing the representation learning process. In this work, we develop a
self-paced learning algorithm to automatically learn the weights of
node correlations in learning node representations. Finally, we per-
form extensive experiments on two real-world network datasets to
evaluate the performance of our representation learning framework.
Experimental results on both multi-label classification and node
clustering show that SANE outperforms state-of-the-art network
embedding methods. In summary, we highlight the contributions
of this paper as follows:
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• We propose to study the similarity-aware network representation
learning, which aims to learn node representations by exploring
different degrees of node similarity in a network.

• We propose a new framework SANE which is capable of preserv-
ing node proximity in terms of both observed network structure
and unobserved node similarity for a consensus embedding rep-
resentation in a robust way.

• We conduct experiments on two real-world network datasets.
Experimental results on two tasks demonstrate the effectiveness
of SANE model over competitive network embedding methods.

2 METHODOLOGY
2.1 SANE Model with Self-paced Learning
There exist several ways to infer the latent similarity degrees be-
tween different nodes, such as Expectation Maximization (EM)
algorithm [2]. However, it heavily relies on the defined margin
likelihood distribution and is very time consuming, which is not
scalable to large-scale network data [6]. To address this issue, we
propose to utilize the Self-Paced Learning (SPL) [6] to estimate the
latent similarity degrees between nodes with no prior knowledge.

Inspired by the learning principle of humans: start with easier
concepts and then gradually takes more complex examples into
consideration [1], SPL, a learning algorithm, is proposed to mimic
such training strategies to facilitate the learning process. In partic-
ular, SPL is proposed to quantify the easiness of each sample/data
point as a hidden variable/weight. Given the training samples as
D = (x1,y1), ..., (xn ,yn ), where xr ∈ Rm denotes the i-th observed
sample, and yi represents i-th label, SPL learns the objectives by
jointly learning model parameters and the easiness of each training
data point (i.e., hidden variable):

argmax
θ,v

∑
i
−wi · L(y,д(xi ,θ )) + f (wi , t) (1)

where L(yi ,д(xi ,θ )) denotes the loss function which calculates the
cost between the real label yi and the estimated label д(xi ,θ ). wi
indicates the easiness of the observed i-th training sample (wi >

0). f (wi , t) is the self-paced function which controls the pace to
increase the difficulty level. The parameter t is the iteration index
which is termed as “age" of the SPL model to control the learning
pace. In particular, when t is small, the “easy" samples with small
losses are considered. As t grows, more samples with larger losses
will be gradually added into the training set.

In our work, we assume that a training node pair is proximate if
their similarity is high. Motivated by SPL algorithm, we propose
to first learn embedding vectors of nodes with higher similarity
degree in order to avoid interfering by irrelevant neighbor nodes,
then target at nodes with complex relationships between the al-
ready learned nodes. Incorporating the similarity degree into the
SPL process is challenging due to dependencies existing between
the similarity degrees of different node pairs. To incorporate the
similarity degree of each training pair, the skip-gram based loss
function could be defined as:

argmax
θ

∑
u ∈V

∑
c ∈C(u)

wu,v log(Pr(c |u;θ )) + f (u, t), (2)

where wu,v represents the similarity degree of the training pair
⟨u,v⟩. However, the calculation on the similarities between center

node u and other nodes in Pr(c |u;θ ) = exp(Xc ,Xu )∑
u∈V exp(Xv ,Xu )

is compu-
tational expensive[4]. Therefore, in our framework, we adopt the
negative sampling technique to modify the conditional probability
Pr(c |u;θ ) as follows:

Pr(c |u;θ ) ∝ log(σ (XcXu )) +
kneg∑
j
Evj∼Dist(u) log(σ (−XcXu )) (3)

By incorporating both the self-paced based skip-gram loss func-
tion and negative sampling strategy, we further give our loss func-
tions as:

L =
∑
u∈X

∑
p∈P

kw∑
i
Eci∼Cp (u)wci ,u

(
log(σ (XciX

T
u ))

+

kneg∑
j
Evj∼Dist(u) log(σ (−XvjX

T
u )) + λ1λ

κ
2 w

′
ci ,u

)
,

where λ1 and λ2 represents the similarity degree learning strength
and difficulty increasing rate, respectively.
2.2 Model Optimization
In this work, we apply stochastic gradient decent algorithm to
derive the solutions by maximizing objective function Eq. 4. Specif-
ically, we partition the variables into two disjoint sets. In each
iteration, our algorithm optimize one set of variables and keep an-
other set of variables fixed. In the learning process, when we fix
similarity degreew , the skip-gram learning algorithm is employed
to obtain the node embedding vectors which maximize the likeli-
hood of preserving both the structural and similarity information
in the network. As the number of iterations increases, more node
training pairs with low similarity degree are fed into the learning
process. Formally, we derive the gradients as follows:

∂L

∂wu
=w′

ci log(σ (XciX
T
u )) +

∑
j
w′

vj log(σ (−XvjX
T
u ))+

λ1λκ2 (w
′
ci +

∑
j
w′

vj ),

∂L

∂w′ci
=wu log(σ (XciX

T
u )) + λ1λ

κ
2 Xu,

∂L

∂w′vj
=wu log(σ (−XvjX

T
u )) + λ1λ

κ
2 Xu,

∂L

∂Xu
=w′

ci (1 − σ (XciX
T
u ))XciXu −

∑
j
w′

vj σ (XvjX
T
u )XvjXu,

∂L

∂Xci
=XuXci (1 − σ (XciX

T
u ))Xu ;

∂L

∂Xvj
= −Xuw′

vj σ (XvjX
T
u )Xu,

(4)

3 EVALUATION
3.1 Experimental Setup
3.1.1 Data. .We perform experiments to evaluate our SANE frame-
work on the following two real-world network datasets:
• Twitter Social Circle Data: This dataset is collected from Twit-
ter to contain the friend relationships (edges) between users
(nodes). Each user is associatedwith 84 labels representing his/her
profile information.

• Facebook Social Circle Data: Similar as the above Twitter
data, this dataset contains the friendships (edges) between users



Table 1: Dataset Statistics
Dataset # Nodes # Edges #Labels
Twitter Social Circle 4,039 88,234 84
Facebook Social Circle 81,306 1,768,149 1,603

(nodes) on Facebook and 1603 labels is leveraged to represent
users’ profile information.

3.1.2 Baselines. We evaluate the effectiveness of our SANE frame-
work on two standard tasks: multi-label classification and node clus-
tering. We consider the following state-of-the-art representation
learning techniques as the baselines for both tasks:

• MF [7]: It assigns a D-dimensional latent vector for the generated
matrix by decomposing a matrix into a product of sub-matrices.

• Walkets [9]: It is a network embedding method for learning
multi-scale representations of nodes in a network by capturing
network structure from multiple resolutions.

• BPR [10]: It is a learning algorithm for personalized ranking and
can be applied in obtaining network embeddings using stochastic
gradient descent and bootstrap sampling.

• LINE [12]: It is a network representation learning method which
samples both one-hop and two-hop neighbors of each node to
represent the network into a latent space.

• DeepWalk [8]/node2vec [4]: They are other two state-of-the-
art network embedding methods. Although they use different
techniques (DeepWalk–hierarchcal softmax,node2vec–negative
sampling) in the random walk procedure, they generate similar
results with the same random walk path input.

3.1.3 Parameter Settings. In this work, the developed SANE
framework is implemented in TensorFlow and we optimize all
morels with the Adam optimizer [5]. For SANE model, the em-
bedding dimension d is set as 128 and the window size kw is 10.
Furthermore, we set the path length l and walks per node r as
80 and 10, respectively. For other two hyperparameters: similarity
degree learning strength λ1 and difficulty increasing rate λ2, we
set λ1 = λ2 = 1.1. We also investigate the influence of different
hyper-parameter settings in the later subsection.

3.2 Multi-label Classification
We first present the evaluation results on the node classification
task. We use the node label to determine the class of each node and
apply Marco-F1 and Micro-F1 to evaluate the classification accuracy
across different categories of node label [4]. In our experiments, we
use external labels contained in the collected datasets as the ground
truth, and train logistic regression classifier [3] on top of the learned
embeddings from different methods to perform the prediction. We
vary the training size from 5% to90% using a stratified split and
consider the rest for testing. We repeat each prediction experiment
10 times and report the average performance.

Table 2 lists the evaluation results of all approaches on Facebook
dataset. We can observe that our SANE framework consistently
outperforms other baselines significantly in all cases. For example,
given the training data percentage as 50%, SANE achieves relatively
16.4%, 7.6% improvement over LINE and DeepWalk/node2vec, re-
spectively. We repeat the experiments on Twitter dataset and report
the evaluation results in Table 3. From this table, we can observe
that SANE achieves the best performance in terms of Macro-F1 and

Micro-F1 with different size of training set, which further demon-
strate the efficacy of our SANE which is capable of learning sig-
nificantly better node embeddings than existing state-of-the-art
methods in multi-label classification task. In summary, the advan-
tage of SANE lies in its proper consideration of different degrees of
node similarity which are usually unavailable in network data.

3.3 Node Clustering
In our experiments, we also investigate how the latent representa-
tions learned by embedding methods can help the node clustering
task on the aforementioned two datasets. The embeddings learned
from each method is considered as input to k-means algorithm and
the clustering results is evaluated in terms of Normalized Mutual
Infomration (NMI) [4]. All clustering experiments are conducted 10
times and the average performance is reported in Table 4. In this
table, we can observe that SANE outperforms other competitive
baselines in node clustering task on both Facebook and Twitter
datasets. In summary, SANE could generate more appropriate em-
beddings for nodes in the network as compared to baselines, which
suggest its ability to jointly capture the underlying structural and se-
mantic relationships between nodes during the process of network
representation learning.
3.4 Parameter Study
In this subsection, we analyze the influences of key hyperparam-
eters on the performance of our SANE model. Due to space limit,
we only present the evaluation results of multi-label classification
task on Facebook dataset in Figure 1. From the evaluation results,
we can observe that the proposed SANE is not strictly sensitive to
different hyperparameter settings. We could observe that increas-
ing the embedding dimension slightly improve the performance
till d reaches 128, we attribute the improvement to the stronger
representation ability with larger hidden state dimensionality. Ad-
ditionally, we can notice that the performance becomes stable as
long as the path length l is above 120. The number of walks per
node r is positively correlated with the classification accuracy. The
performance is improved slightly as window size kw increases and
then saturates when kw ≥ 10. We further observe that both simi-
larity degree learning strength λ1 and difficulty increasing rate λ2
have low impact on the model performance.
4 CONCLUSION
This paper presents a similarity-ware embedding method for net-
work embedding with a self-paced learning framework. The pro-
posed approach can jointly incorporate the network structure and
semantic relationship information between nodes into the network
representation learning process. We evaluate the performance of
our proposed approach on two real-world networks in both multi-
label classification and node clustering tasks. Experimental results
show that our SANE significantly outperforms competitive base-
lines by generating better embeddings for nodes in a network.
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Table 2: Multi-label node classification results on Facebook data.
Training Set %

Metric Model 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1

MF 0.6800 0.7224 0.7647 0.7792 0.7894 0.7951 0.7981 0.8021 0.8130 0.8148
Walklets 0.6701 0.7058 0.7344 0.7491 0.7567 0.7629 0.7655 0.7681 0.7720 0.7735
BPR 0.6566 0.6928 0.7298 0.7444 0.7602 0.7644 0.7689 0.7742 0.7833 0.7856
LINE 0.6578 0.6973 0.7324 0.7475 0.7633 0.7682 0.7734 0.7820 0.7889 0.7912

DeepWalk/Node2Vec 0.7298 0.7661 0.8008 0.8171 0.8261 0.8313 0.8359 0.8428 0.8501 0.8515
SANE 0.7478 0.8005 0.8435 0.8687 0.8830 0.8941 0.9005 0.9085 0.9159 0.9202

Macro-F1

MF 0.3431 0.4155 0.5226 0.5633 0.5936 0.6167 0.6292 0.6425 0.6594 0.6158
Walklets 0.3591 0.4280 0.4947 0.5253 0.5444 0.5610 0.5665 0.5746 0.5759 0.5481
BPR 0.3302 0.3866 0.4678 0.4983 0.5323 0.5448 0.5542 0.5643 0.5745 0.5437
LINE 0.3706 0.4462 0.5292 0.5693 0.6046 0.6239 0.6356 0.6495 0.6574 0.6141

DeepWalk/Node2Vec 0.4527 0.5412 0.6224 0.6593 0.6829 0.7033 0.7181 0.7285 0.7276 0.6810
SANE 0.5079 0.6220 0.7125 0.7574 0.7826 0.8124 0.8258 0.8363 0.8345 0.7861

Table 3: Multi-label node classification results on Twitter data.
Training Set %

Metric Model 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1

MF 0.4889 0.5282 0.5529 0.5714 0.5875 0.5996 0.6095 0.6197 0.6261 0.6277
Walklets 0.7527 0.8081 0.8552 0.8788 0.8919 0.9040 0.9116 0.9181 0.9251 0.9293
BPR 0.4247 0.4539 0.4811 0.4989 0.5115 0.5226 0.5280 0.5372 0.5449 0.5465
LINE 0.7192 0.7680 0.8123 0.8361 0.8516 0.8637 0.8736 0.8814 0.8885 0.8924

DeepWalk/Node2Vec 0.7672 0.8335 0.8884 0.9123 0.9269 0.9361 0.9435 0.9484 0.9531 0.9561
SANE 0.8400 0.8948 0.9326 0.9473 0.9561 0.9617 0.9658 0.9685 0.9712 0.9733

Macro-F1

MF 0.1716 0.1984 0.2289 0.2481 0.2654 0.2786 0.2892 0.2986 0.3057 0.3083
Walklets 0.4641 0.5745 0.6772 0.7282 0.7610 0.7845 0.8003 0.8124 0.8148 0.7977
BPR 0.1264 0.1463 0.1669 0.1768 0.1858 0.1918 0.1952 0.2000 0.2039 0.2056
LINE 0.4043 0.4908 0.5804 0.6318 0.6669 0.6928 0.7121 0.7259 0.7337 0.7220

DeepWalk/Node2Vec 0.4222 0.5415 0.6644 0.7287 0.7698 0.7968 0.8161 0.8288 0.8340 0.8159
SANE 0.5647 0.6830 0.7797 0.8223 0.8487 0.8665 0.8777 0.8850 0.8878 0.8634
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Figure 1: Hyper-parameter sensitivity evaluation of SANE in multi-label classification.
Table 4: Node clustering results on both Facebook and Twit-
ter data in terms of Normalized Mutual Infomration (NMI).

Algorithm Facebook Dataset Twitter Dataset

MF 0.7871 0.7168
Walklets 0.7912 0.8570
BPR 0.7943 0.5628
LINE 0.7291 0.7500
DeepWalk/Node2Vec 0.7854 0.8621
SANE 0.7958 0.8892

Laboratory or the U.S. Government. The U.S. Government is autho-
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