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ABSTRACT

With the increase of temporal data availability, time series classifica-
tion has drawn a lot of attention in the literature because of its wide
spectrum of applications in diverse domains (e.g., healthcare, bioin-
formatics and finance), ranging from human activity recognition to
financial pattern identification. While significant progress has been
made to solve time series classification problem, the success of such
methods relies on data sufficiency, and may not well capture the
quality embeddings when training triple instances are scarce and
highly imbalance across classes. To address these challenges, we
propose a prototype embedding framework—Deep Prototypical Net-
works (DPN), which leverages a main embedding space to capture
the discrepancies of difference time series classes for alleviating
data scarcity. In addition, we further augment DPN framework with
a relationship-dependent masking module to automatically fuse
relevant information with a distance metric learning process, which
addresses the data imbalance issue and performs robust time series
classification. Experimental results show significant and consistent
improvements compared to state-of-the-art techniques.
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1 INTRODUCTION

With the increase of temporal data availability, time series classifica-
tion has drawn a lot of attention in the literature because of its wide
spectrum of applications in diverse domains (e.g., healthcare [17],
bioinformatics [4] and finance [11]). In general, the goal of time
series classification is to assign time-ordered sequences into spe-
cific categories based on various time series patterns [10]. To solve
this problem, a significant line of previous research has focused
on the exploration of various features and ensemble techniques. In
particular, feature-based methods aims to identify a set of features
that could represent the global/local time series patterns and then
given to the classifiers [3, 12]. Given the extracted various features,
ensemble based approaches incorporate different features into the
integrated ensemble paradigms [1].

These above feature-based approaches require a set of informa-
tive and discriminating domain-specific features, which involves
hand-engineering effort based on expert knowledge. To mitigate
this limitation, several convolutional neural network based methods
have been proposed and show promising performance for various
applications [5, 9, 15]. Their key idea is to unify feature learning
and classification parts with different levels of abstraction, based
on multiple layers of processing units (e.g., convolution and pool-
ing). The success of such learning approaches largely relies on a
sufficient amount of training instances, such that the learned em-
beddings could well preserve latent structures of time series data.
However, many practical scenarios involve a limited amount of
labeled data. For example, in enterprise or healthcare scenarios,
labelling samples is often very expensive or even impossible [7, 14],
yet it is important to build effective time series classification models
given only a handful of labeled examples per class.

There exist two key challenges in order to address the problem
of time series classification under data scarcity. First, In time se-
ries classification, performing pattern learning under data scarcity,
will have the undesirable tendency to extremely overfit the highly
imbalanced time series data [17]. Hence, the model requires a so-
phisticated strategy to transfer knowledge across different time
series classes and guide the representation learning process, in or-
der to alleviate data scarcity issue. Second, the temporal patterns of
time series data often involve underlying factors which are dynam-
ically evolving over time [16]. Despite the effectiveness of applying
neural network techniques to capture the non-linearity in dynamic
time series, their classification performance can be hindered by
the data scarcity issue in the imbalanced time series data. It is also
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challenging to perform imbalance class learning with temporal
dynamics from a limited amount of labeled time series data.

Motivated by the aforementioned challenges, this work pro-
poses a general and flexible learning framework-Deep Prototypical
Networks (DPN)-to exploit deep neural networks for end-to-end
imbalanced time series classification under data scarcity. In particu-
lar, we develop a prototypical embedding module which maps time
series input into an latent embedding space to serve as the proto-
type representation for each class, with a meta-learning framework.
This prototype embedding space bridges the labeled set of examples
(the support set) with unlabeled points (the query set), such that the
knowledge from other classes can be leveraged to guide the embed-
ding process across time series classes for alleviating data scarcity.
In the mean time, we develop a relationship-dependent masking
module to learn the distance metric between embeddings from deep
neural network models, and automatically assign different weights
to their different attributes with a high-level of non-linearities. Such
augmented robust embedding space enables us to reduce noise or
redundant information in the given imbalanced time series classes
and perform time series classification.

The main contributions can be summarized as follows:

o We study the problem of classifying time series data from a
limited amount of labeled training samples under data imbalance.

o We design a prototype embedding framework—Deep Prototyp-
ical Networks (DPN), which uses a main embedding space to
capture the discrepancies of difference time series classes under
the scenario of data scarcity.

o We further endow DPN with a relationship-dependent masking
module to fuse relevant information into the automatically dis-
tance metric learning process, which alleviate data imbalance
issue and perform robust time series classification.

e Through experiments performed on 49 time series classification
benchmark datasets, we show that DPN consistently surpasses
several state-of-the-art baselines.

2 PRELIMINARIES

In our work, we consider a time series classification scenario with
a total number of C classes which is indexed by c.

DEFINITION 1. Time Series. A time series is a sequential set of
measurements collected at equally spaced intervals over a period
of time, i.e., a vector X = [x1,...,X¢,...,x7] (t € [1,...,T]) in
chronological order, where x; is the value (i.e., continuous or discrete
value) collected from the t-th time interval.

Time Series Classification. The objective of time series classifi-
cation task is to predict a class label ¢ for a given fixed-length time
series X whose label is unknown. Specifically, we aim to learn a
classification function from a set of labeled time series (the training
instances), to take an unlabeled time series (the testing instances)
as input and outputs a label c.

3 METHODOLOGY
3.1 Prototypical Embedding Framework

We propose to leverage the knowledge across different time series
classes to address the challenge of data scarcity. Inspired by [13],
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Figure 1: The Deep Prototypical Networks Framework.

we first develop a prototype embedding framework which uncov-
ers temporal dynamics under data scarcity. With a limited number
of training time series instances, our designed prototype embed-
ding framework embeds time series data into low-dimensional
representations by modeling the time-evolving temporal patterns
manifested in the time series topological structure. We define the
support set S (s; € S indexed by i) to represent the set of labeled
instances and the query set Q (g; € Q indexed by j) to indicate the
set of unlabeled time series for making predictions. In general, our
module leverages the support set S to extract a prototype vector
representation from each time series class, and performs classifica-
tion on the inputs from the query set based on their distance to the
generated prototype representation of each class.

Our model takes different time series as input and learns an
embedding function to make similar examples (from the same class)
close to each other and makes dissimilar examples far apart from
each other. Specifically, we first perform a non-linear mapping of
the time series inputs X into low-dimensional latent spaces via
the embedding function hA(X). Then, we perform classification on
a given query point in Q by discovering its nearest class proto-
type representation. Hence, our framework enables us to effectively
transfer knowledge across different classes and guide the represen-
tation learning process. To calculate the prototype p. of each class
c, we take p, to the mean of its support embedding space as:

5, 2 Zihezie "
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where z; ¢ = I[y; = c]. These prototypes of classes are considered
as classifier metric to classify any query sample g; from Q. Our
model assigns a probability over any class ¢ from class set C based
on the distance which is formally defined as follows:

o = exp(=lh(q) — Scl)
7 e exp(=llh(g) = Ser )

where 7g, ¢ is the probability that the time series g is label as c class.

@)

3.2 Relationship-Dependent Masking Module

In the distance estimation process of our DPN framework, each
element of the prototype embedding is equally weighted. How-
ever, this may not be realistic, due to the fact that each element
in the learned prototype representation has different importance



weights to characterize the dependent relation between two em-
bedding vectors. To mitigate this limitation, we further develop a
relationship-dependent masking module to adaptively capture the
implicit element-wise correlations among prototype embeddings,
and let the learning algorithm focus on the most informative parts
in estimating the distance. In specific, our masking module aims
to free the main embedding space from the fixed-length internal
representation by introducing a vector to model the dependence de-
grees of each element in the prototype embedding p.. Formally, the
importance computation formulations in DPN are given as follows:

H. = tanh(W,v + b,),
M, = sigmoid(W;H, + b;) 3)
where M € R% is embedding mask, W, € Rkde, Wi € RAoXk are

transformation matrices, b, € R¥, b; € R are bias terms. We esti-

mate the probability 4, c by incorporating mask vectors into the dis-
exp(=[|(h(q)=Sc)Mc|)

tance calculation process as follows: §jg ¢ = S expC-1(h(Q)=-S M T])"
4 - )V

3.3 The Learning Process of DPN Framework

We utilize cross entropy as the metric in our loss function which is
defined as follows:

1 N C
L=-2>"" yiclog(dic) 4
N i ¢

where y; ¢ and §; . represent the actual and estimated probability
that the time series i is label ¢. The model parameters can be derived
by minimizing the average loss, iterating over training episodes
and performing a gradient descent update for each. Here, episode
represents sampled mini-batches during training and each episode
is designed to mimic the data scarcity scenario by subsampling
classes and data instances. The utilization of episodes improves
the generalization of training process under data scarcity and the
performance is evaluated on test set episodes.

4 EVALUATION

4.1 Data Description

We evaluate all methods thoroughly on the UCR time series classifi-
cation archive!, which consists of 49 datasets selected from various
real-world domains. We measure the data balance in training set
by Shannon Entropy, formally defined as follows:

k ¢ Ci
_2j=1 mlogy

log k ©)

B =

where c; represents the number of instance in class i, k is the number
of classes. The lower f indicates the higher imbalance degree.

4.2 Experimental Settings
4.2.1 Baselines. We consider the following baselines:

e Synthetic Minority Over-sampling Technique (SMOTE: short for
SMT) [6]: it is a representative over-sampling approach for the
class imbalance problem, in which the minority class is over-
sampled by creating “synthetic” examples.

Thttp://www.timeseriesclassification.com/dataset.php

EmLP 3 EmLP
[EFcN [EFCN
[CIResNet [CIResNet

~

»n
o

2l
~

Average Rank
Fed
o -
Average Rank
& - &

o

0 10 20 30 40 07 08 09 095 1.0
a B

(a) Data Scarcity Degree o (b) Data Imbalance Degree f

Figure 2: Effect of data scarcity and imbalance degree.

e Adaptive Synthetic Sampling Approach for Imbalanced Learning
(ADASYN: short for ASY) [8]: this method is an adaptive over-
sampling learning developed for imbalanced data classification
task by generating synthetic data samples for the minority class.

o Synthetic Minority Over-sampling Technique with Edited Near-
est Neighbor Rule (SMOTE-ENN: short for SMT-E) [2]: it inte-
grates the over- and under-sampling imbalanced class learning
framework, by jointly balance training instances and removing
noisy examples on the wrong side of the decision border.

e Prototype Networks (PN) [13]: this approach is proposed to ad-
dress the data scarcity challenge in classification task based on
inductive bias learning.

The parameter settings of SMT and SMT-E is consistent with that
in [6] and [2]. In MLP transformation module, we set the number
of hidden layers as 3 and 500 hidden units in each layer. Following
the setting in [15], we set the architecture of FCN as (8*64, 5128,
3*128) and architecture of ResNet as ((8*64, 5*64, 3*64), (8*128, 5128,
3*128), (8*256, 5256, 3*256)), where a*b represents the kernel size a
and the number of filters b in each layer. In DPN, we set the support
size and mask hidden dimensionality as 5 and 64, respectively. The
batch size and learning rate is set as 16 and 0.005.

4.3 Evaluation on Benchmark Dataset

We normalize the datasets by following the preprocessing step in
[11]. All the experiments use the default training and testing set
splits provided by UCR, and the results are rounded to three decimal
places. We use error rate as an evaluation metric following the same
experimental setting in [15], defined as: error = 1 — ﬁ >illgi =
yi], where N and i are the number and index of testing instances,
respectively. We report the test error rate from the best performed
model trained with the minimum cross-entropy loss.

4.4 Effect of Data Scarcity and Imbalance
Degree

We investigate the effectiveness of DPN with respect to different
data scarcity degrees a and imbalance degrees f. As shown in
Figure 2. We can observe that our DPN is not strictly sensitive to
data scarcity and imbalance degrees, which suggests the robustness
of our developed DPN in time series classification task.

5 CONCLUSION

This paper develops an effective learning framework, Deep Proto-
typical Networks (DPN), for imbalanced time series classification
under data scarcity. In DPN, we first propose a prototypical embed-
ding framework to embeds time series data into low-dimensional



Table 1: Performance comparison of different methods in time series classification. « and f represents average instances per
class and balance density degree of time series in training data, respectively.

Method | | [l MLP [l FCN [l ResNet

Data | « | B || BSC | SMT | ASY | SMT-E | PN | DPN || BSC | SMT | ASY | SMT-E | PN DPN || BSC | SMT | ASY | SMT-E | PN | DPN
50words 9 | 0.90 || 0.88 | 0.88 | 0.88 | 0.8 | 032 | 0.36 || 0.52 | 0.67 | 0.55 | 0.98 | 0.46 | 041 || 0.44 | 0.53 | 0.51 | 0.52 | 042 | 042
Adiac 10 | 0.99 || 0.98 | 0.98 | 0.95 | 0.98 | o080 | 0.82 || 0.98 | 0.95 | 0.98 | 098 | 025 | 0.27 || 0.95 | 0.98 | 0.98 | 0.98 | 0.29 | 025
ArrowHead 12 | 1.00 || 0.61 | 0.61 | 0.61 | 0.61 | 0.29 | 003 || 0.70 | 0.70 | 0.86 | 0.70 | 032 | 0.35 [| 0.70 | 0.70 | 0.70 | 0.70 | 0.53 | 0.1
Beef 6 | 1.00 || 0.80 | 0.80 | 0.80 | 0.80 | 0.43 | 006 || 0.88 | 0.80 | 0.80 | 0.47 | 030 | 0.37 || 0.88 | 0.60 | 0.80 | 0.80 | 040 | 0.50
BeetleFly 10 | 1.00 || 0.50 | 0.50 | 0.50 | 0.50 | 020 | 020 || 0.50 | 0.50 | 0.30 | 0.50 | 0.20 | 0.05 || 0.50 | 0.50 | 0.50 | 0.50 | 0.05 | 0.5
BirdChick 10 | 1.00 || 0.50 | 0.50 | 0.50 | 0.50 | 035 | 035 || 0.50 | 0.50 | 0.50 | 0.50 | 0.30 | 0.20 [l 0.50 | 0.50 | 0.50 | 0.50 | 0.25 | 0.5
CBF 10 | 0.99 || 0.67 | 0.66 | 0.66 | 0.67 | 0.38 | 036 || 0.03 | 0.67 | 0.05 | 0.04 | 0.02 | 001 [l 0.04 | 0.03 | 0.02 | 0.01 | 0.02 | 0.0
Car 15 [ 0.99 || 0.78 | 0.78 | 0.78 | 0.78 | 0.33 | 027 || 0.78 | 0.78 | 0.78 | 0.78 | 0.23 | 013 || 0.78 | 0.68 | 0.57 | 0.78 | 015 | 015
CinCECG 10 [ 0.9 || 0.75 | 0.75 | 0.75 | 0.75 | 014 | 0.17 || 0.46 | 0.53 | 0.49 | 0.55 | 0.33 | 028 || 0.54 | 0.49 | 0.47 | 0.44 | 032 | 0.40
Coffee 14 | 1.00 || 046 | 046 | 046 046 046 | 046 || 0.54 | 0.54 | 0.54 | 0.54 | 0.04 | 000 || 0.46 | 0.46 | 0.46 | 0.46 | 0.04 | 0.00
CricketX 32 | 1.00 || 0.93 | 0.92 | 0.93 | 0.93 | o046 | 0.52 [| 0.91 | 0.35 | 0.32 | 0.33 | 0.32 | 027 || 0.36 | 0.38 | 0.35 | 0.98 | 031 | 0.34
CricketY 32 | 1.00 || 0.93 | 0.93 | 0.93 | 0.93 | 0.52 | 051 [| 0.37 | 0.37 | 0.40 | 0.39 | 0.36 | 033 || 0.40 | 0.44 | 0.41 | 0.60 | 0.33 | 031
CricketZ 32 | 1.00 [| 0.94 | 0.92 | 0.94 | 0.94 | 043 | 0.55 || 0.34 | 0.37 | 0.30 | 0.33 | 027 | 0.29 || 030 | 0.9 | 0.39 | 0.38 | 0.31 | 0.35
eReduction 4 1090 || 070 | 070 | 0.70 070 | 0.89 | 0.89 || 0.70 | 0.70 | 0.70 | 0.70 | 0.10 | 0.08 || 0.70 | 0.88 | 0.70 | 0.70 | 0.05 | 0.06
ECG5Days 11 | 0.97 || 0.50 | 0.50 | 0.53 | 0.50 | 038 | 0.50 || 0.25 | 0.04 | 0.07 | 0.18 | 0.01 | 001 || 0.12 | 0.50 | 0.28 | 0.50 | 0.00 | 0.00
CBF 10 | 1.00 || 0.87 | 0.87 | 0.87 | 0.87 | 0.51 | 045 || 0.87 | 0.87 | 0.87 | 0.87 | 0.11 | 006 || 0.87 | 0.87 | 0.87 | 0.87 | 010 | 0.14
FaceAll 40 | 1.00 [ 0.99 | 0.91 | 0.99 | 0.91 | 0.39 | 036 || 0.20 | 0.32 | 0.28 | 0.31 | 0.20 | 014 || 0.98 | 0.96 | 017 | 0.18 | 0.21 | 0.19
FaceFour 6 | 0.95 || 0.70 | 0.70 | 0.70 | 0.70 | 016 | 016 || 0.20 | 0.29 | 0.18 | o0.16 016 | 0.17 || 0.23 | 0.27 | 0.70 | 0.28 | 0.23 | o022
FacesUCR 14 | 0.95 || 0.86 | 0.86 | 0.93 | 0.86 | 0.36 | 034 [| 0.21 | 0.22 | 0.27 | 0.23 | 0.13 | o010 || 0.21 | 0.30 | 0.23 | 0.23 | 0.17 | 012
GunPoint 25 | 1.00 || 0.51 | 0.51 | 0.51 | 0.51 | 0.28 | 020 || 0.06 | 0.51 | 0.07 | 0.51 | 0.03 | 001 || 0.51 | 0.51 | 0.23 | 0.51 | 003 | 0.49
Haptics 31 | 0.98 || 0.79 | 0.78 | 0.71 | 0.79 | 0.60 | 059 || 0.68 | 0.68 | 0.66 | 0.64 | 059 | 0.60 || 0.68 | 0.74 | 0.70 | 0.70 | 0.61 | 0.57
Herring 32 | 0.96 || 041 | 0.59 | 0.59 | o041 041 | 041 041 | 0.59 | 0.59 | o041 | 0.50 | 0.42 || 0.41 | 0.41 | 0.59 | 0.41 | 0.39 | 033
InlineSk 14 | 0.99 || 0.84 | 0.91 | 0.84 | 0.84 | 066 | 0.80 || 0.77 | 0.91 | 0.79 | 0.76 | 070 | 0.80 || 071 | 0.91 | 0.78 | 0.76 | 0.81 | 0.81
InsectWs 20 | 1.00 [| 0.91 | 0.91 | 0.91 | 0.91 | 0.41 | 038 || 0.91 | 0.67 | 0.75 | 0.61 | 0.63 | 061 || 0.91 | 055 | 0.91 | 091 | 0.57 | 0.60
PowerDem 33 | 1.00 [| 0.50 | 0.50 | 0.50 | 0.50 | 0.06 | 004 || 0.04 | 0.04 | 0.04 | 003 | 0.04 | 0.04 || 003 | 0.04 | 0.04 | 005 | 0.44 | 0.04
Lightning2 30 | 0.92 || 0.46 | 0.46 | 0.46 | 0.46 | 0.23 | 020 || 0.15 | 0.20 | 0.16 | o012 | 0.38 | 0.25 || 0.46 | 016 | 0.18 | 0.18 | 0.28 | 0.29
Lightning7 10 | 0.96 || 0.74 | 0.74 | 0.86 | 0.74 | 0.29 | 027 022 | 0.29 | 0.40 | 0.40 | 0.29 | o022 || 0.34 | 0.27 | 0.36 | 0.98 | 025 | 0.27
Meat 20 | 1.00 || 0.67 | 0.67 | 0.67 | 0.67 | 015 | 0.35 || 0.67 | 0.67 | 0.67 | 0.67 | 0.08 | 005 || 0.67 | 0.67 | 0.67 | 0.67 | 0.07 | o0.02
Medicall 38 | 0.71 049 | 0.96 | 0.96 | 049 | 0.82 | 0.73 || 0.26 | 0.26 | 0.28 | 0.29 | 0.30 | 024 || 0.28 | 0.25 | 025 | 031 | 0.28 | 0.26
MoteStrain 10 | 1.00 || 0.46 | 0.46 | 0.46 | 0.46 | 0.3¢ | 015 [| 0.54 | 0.15 | 0.24 | 0.17 | 0.12 | 010 || 0.20 | 0.21 | 0.46 | 0.46 | 0.13 | 012
ECGThorax1 | 42 | 1.00 || 0.98 | 0.98 | 0.98 | 0.98 | 0.74 | 042 || 0.19 | 0.21 | 0.98 | 0.20 | 009 | 0.11 || 0.17 | 0.15 | 0.17 | 0.98 | 007 | 0.22
ECGThoraxz | 42 | 1.00 || 0.98 | 0.97 | 0.98 | 0.88 | 0.37 | 034 || 0.16 | 0.16 | 0.98 | 0.14 | 009 | 0.11 [| 0.16 | 0.14 | 0.98 | 0.98 | 0.08 | 0.08
OSULeaf 33 | 0.97 || 0.82 | 0.87 | 0.91 | 0.82 | 046 | 046 || 0.27 | 0.91 | 0.91 | 0.22 | 0.15 | 007 || 0.24 | 0.77 | 0.24 | 0.28 | 0.08 | 0.04
OliveOil 7 | 093 || 0.60 | 0.60 | 0.60 | 0.60 | 0.83 | 027 || 0.60 | 0.60 | 0.60 | 0.60 | 0.23 | 017 || 0.60 | 0.60 | 0.60 | 0.60 | 017 | 0.17
Phoneme 5 | 090 [| 089 | 089 | 0.98 | 089 | 0.94 | 0.93 || 0.75 | 075 | 0.78 | 0.77 | 0.77 | 0.76 || 0.76 | 074 | 0.76 | 0.77 | 0.78 | 0.78
Plane 15 | 0.99 || 0.91 | 0.80 | 0.91 | 0.91 004 | 004 [| 0.03 | 0.03 | 0.04 | 0.04 | 0.01 [ 000 || 0.02 | 0.80 | 0.02 | 0.01 | 0.01 | 0.00
hapeletSim 10 | 1.00 || 050 | 050 | 050 0.50 050 | 0.51 [| 0.50 | 0.50 | 0.50 | 0.00 000 | 000 [| 0.50 | 0.50 | 0.50 | 0.50 | 0.03 | 0.06
ShapesAll 10 | 1.00 || 0.98 | 0.98 | 0.98 | 0.98 | 020 | 0.32 || 0.98 | 0.98 | 0.98 | 0.98 | 0.17 | 017 || 0.98 | 0.98 | 0.98 | 0.98 | 0.18 | 012
SonyAIBO1 10 | 0.88 || 0.57 | 0.43 | 0.43 | 0.57 | 0.36 | 034 || 0.12 | 006 | 0.07 | 0.06 | 0.18 | 0.15 [| 0.11 | 0.57 | 0.11 007 | 0.17 | 0.16
SonyAIBO2 10 | 0.97 || 0.38 | 0.62 | 0.38 | 038 | 019 | 0.20 || 006 | 0.16 | 0.61 | 0.08 | 0.12 | 0.07 || 0.08 | 0.09 | 004 | 0.89 | 0.09 | 0.09
SwedLeaf 33 | 1.00 || 0.95 | 0.94 | 0.95 | 0.95 | 0.51 | 042 || 0.11 | 0.94 | 0.08 | 0.10 | 0.07 | 006 || 0.12 | 0.93 | 0.1 | 0.11 | 007 | 0.08
Symbols 4 095 || 0.83 | 0.83 | 0.83 | 0.83 | 0.18 | 017 || 0.41 | 0.83 | 0.25 | 0.20 | 0.11 | 009 || 0.30 | 0.83 | 0.24 | 0.83 | 013 | 0.14
ToeSeg1 20 | 1.00 || 0.47 | 0.47 | 0.47 | 0.47 | 0.35 | 033 || 0.53 | 0.53 | 0.22 | 0.53 | 0.08 | 004 || 0.17 | 0.53 | 0.53 | 0.15 | 0.41 | 0.08
ToeSeg? 18 | 1.00 || 0.81 | 0.81 | 0.81 | 0.81 015 | 0.20 || 0.41 | 0.81 | 0.22 | 0.23 | 0.17 | 010 || 0.18 | 012 | 0.37 | 0.81 | 0.31 | 0.13
Trace 25 | 099 || 0.81 | 0.77 | 0.81 | 0.81 | 0.49 | 0.0 000 | 000 | 031 | 030 | 000 | 000 || 0.01 | 0.25 | 0.01 000 | 0.01 | 000
TwolLeadECG | 11 | 1.00 || 0.50 | 0.50 | 0.50 | 0.50 | 0.28 | 023 || 0.50 | 0.50 | 0.50 | o001 | 0.10 | 0.08 || 0.50 | 0.50 | 0.50 | 0.28 | 0.12 | 0.11
Wine 28 | 1.00 || 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 043 || 0.50 | 0.50 | 0.50 | 0.50 | 024 | 0.26 || 0.50 | 0.50 | 0.50 | 0.50 | 0.26 | 0.22
WordSyns 10 | 0.87 || 0.78 | 0.78 | 0.98 | 0.78 | o041 | 0.82 || 0.62 | 058 | 0.60 | 0.62 | 0.60 | 0.81 [| 0.57 | 0.55 | 0.97 | 0.58 | 0.55 | 0.66
Worms 36 | 0.91 || 0.58 | 0.58 | 0.82 | 0.58 | 0.54 | 015 || 0.49 | 041 | 0.45 | 0.43 | 0.44 | 0.44 || 0.50 | 0.39 | 0.49 | 0.49 | 0.44 | 037
Win 6 4 3 6 20 33 4 5 0 6 12 30 3 5 3 2 16 26
Avg Rank ‘ ‘ H 2.04 ‘ 2.71 ‘ 3.90 ‘ 4.29 ‘ 1.12 ‘ 0.94 H 2.63 | 3.16 ‘ 3.61 ‘ 3.22 ‘ 1.47 ‘ 0.90 H 2.43 ‘ 3.12 ‘ 3.14 ‘ 3.84 ‘ 1.37 ‘ 110

representations. Then, we d651gn ar elatlonshlp-dependent maskmg [6] Alberto Fernandez, Salvador Garcia, Francisco Herrera, and Nitesh V Chawla.

module to augment the main embedding space of DPN by automat-
ically learning the importance weights of prototype embeddings.
One future direction is to incorporate general knowledge from
external sources to further improve the DPN model.
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