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ABSTRACT
Hyper-local pricing data, e.g., about foods and commodities, ex-

hibit subtle spatiotemporal variations that can be useful as crucial

precursors of future events. �ree major challenges in modeling

such pricing data include: i) temporal dependencies underlying

features; ii) spatiotemporal missing values; and iii) constraints un-

derlying economic phenomena. �ese challenges hinder traditional

event forecasting models from being applied e�ectively. �is pa-

per proposes a novel spatiotemporal event forecasting model that

concurrently addresses the above challenges. Speci�cally, given

continuous price data, a new so� time-lagged model is designed to

select temporally dependent features. To handle missing values, we

propose a data tensor completion method based on price domain

knowledge. �e parameters of the new model are optimized using a

novel algorithm based on the Alternative Direction Methods of Mul-

tipliers (ADMM). Extensive experimental evaluations on multiple

datasets demonstrate the e�ectiveness of our proposed approach.

1 INTRODUCTION
Hyper-local pricing data about goods and commodities is becoming

useful as an economic variable to study the unfolding of large soci-

etal events. For example, research [1] into the 2011 Egypt uprisings,

the so-called “Arab Spring” [2], has demonstrated a correspondence

between rises in food prices and social unrest. A rapid rise in raw

material prices, in this case agricultural products, coincided with

a series of demonstrations, protests, and subsequent civil wars

throughout the Arab world. Strong spatio-temporal associations

are also typically associated with such phenomena. For instance,

considering the price of co�ee, Colombia’s largest export, recent

research [3] indicated that when the price of this labor-intensive

commodity rises, work hours and wages increase and con�ict de-

clines in the areas that produce it. In contrast, the collapse in co�ee

prices from 1997-2003 resulted in 18% more guerrilla a�acks, 31%

more paramilitary a�acks, and 22% more clashes with the authori-

ties in Columbia’s co�ee growing areas. �erefore, price data about

goods and commodities is a powerful indicator linking signi�cant

societal events within a spatial and temporal context.
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Although price data is collected by organizations such as the

World Bank [4], these datasets are o�en released only at a monthly

level and o�en with a time-lag; as a result they cannot be used as a

real-time indicator of evolving events. �e modern pervasiveness

of mobile devices has made human contributors a key data source

to �ll this gap. For example, Premise
1

collects thousands of com-

modity prices in more than 30 countries across six continents using

human participants, while GasBuddy
2

collects local gas prices from

millions of vehicle drivers.

Existing spatiotemporal event forecasting methods are mainly

focused on datasets containing no or few missing data points and

do not exploit key characteristics of hyper-local price data, largely

because event forecasting based on pricing data is a complex prob-

lem that faces several important challenges. 1. Temporal price
dependence. Unlike most traditional datasets, pricing informa-

tion cannot be treated as a set of independent point objects. For

example, the average home value in Palo Alto, CA went up from

$1.58M in 2013 to $2.48M in 2016, but as it stands, this data does

not show the important detail that this rate rose by 30% in the past

year alone. �is example demonstrates that micro-trends in spatial

and temporal pro�les are important to model as part of the feature

extraction process. 2. Missing values in hyper-local datasets.
When prices are collected from local data contributors missing data

is quite common and typically a�ributed to spatial sparsity and

temporal discontinuities. As the missing data o�en has a strong

correlation with its neighbors, simply discarding them is not an

ideal strategy as the resulting datasets become too sparse to support

meaningful analysis. 3. Price domain knowledge utilization.

Price is not an arbitrary measure but a structurally controlled factor

determined by markets and economic forces. For example, if the

price of a tradable good in one region is markedly higher than in

neighboring areas, entrepreneurs will transport the goods from

the lower price areas to leverage the price in the higher price ar-

eas. �us, utilizing prior domain knowledge in conjunction with

spatially and temporally sparse price data is clearly bene�cial.

In order to simultaneously address the above technical chal-

lenges, we propose a novel hyper-local price-based event fore-

casting model (HPEF). �e main contributions of our study are

summarized below. We:

• Design a framework for event forecasting based on
hyper-local price data. A �exible framework shown in

Figure 1 is proposed for spatiotemporal event forecasting

that utilizes hyper-local price data collected by millions of

1
h�ps://www.premise.com/

2
h�ps://www.gasbuddy.com



Figure 1: A schematic view of the proposed spatiotemporal event forecasting approach from hyper-local price data.

independent data collectors. �e proposed framework si-

multaneously exploits massive spatiotemporal hyper-local

price data and addresses the shortage of high ratios of

missing data owing to sparse data collectors.

• Propose a robust model for spatiotemporal missing
valueswith so� time-lagged feature selection. To model

interactions between continuous prices across multiple

time periods, we propose a so� time-lagged feature se-

lection regularization based on spatiotemporal price data.

To handle interactions among missing values, the model

proposed here adopts a spatiotemporal tensor completion

framework that is capable of learning missing values based

on temporal and spatial coherence.

• Develop an e�cient algorithm for model parameter
optimization. To optimize the proposed model, a con-

strained spatiotemporal tensor completion problem com-

bined with coe�cient decay weights had to be solved. By

introducing auxiliary variables, we present an e�cient

algorithm based on the alternating direction method of

multipliers (ADMM) to support rapid convergence.

• Conduct extensive experiments to evaluate the per-
formance of HPEF. Our proposed method was evaluated

using 6 di�erent datasets in two domains: forecasting civil

unrest in Latin America and real estate trends in the United

States. �e results demonstrate that the proposed approach

runs e�ciently and consistently outperforms the best of

existing methods alongside multiple metrics.

�e remainder of this paper is organized as follows. Section 2

presents related work on event forecasting, missing values in high

dimensional data, and temporal interaction-based feature selection.

�e problem de�nition is presented in Section 3. Our proposed

HPEF model is described in Section 4 and Section 5 provides de-

tails of the new model’s optimization algorithm. In Section 6, the

experimental results are analyzed and the paper concludes with a

summary of our work in Section 7.

2 RELATEDWORK
�is section introduces related work in several research areas.

Event detection and forecasting. A large body of work has

focused on the identi�cation of ongoing events such as earth-

quakes [5] and disease outbreaks [6], while event forecasting meth-

ods predict the incidence of such events in the future. Many event

forecasting methods focus on purely temporal events, with no or

lesser emphasis placed on the geographical dimension, such as

stock market movements [7] and elections [8]. Few existing ap-

proaches are capable of providing true spatiotemporal resolution

for the events they predict, although Zhao et al. [9] designed a mul-

titask learning framework that models forecasting tasks in related

geo-locations concurrently and Gerber utilized a logistic regression

model for spatiotemporal event forecasting [10]. One limitation of

these existing studies is that the temporal dimension is considered

to be independent of the spatial dimension and any interactions

between the two are ignored.

Missing values in high dimensional data. �e prevention

and management of missing data has been discussed and inves-

tigated in earlier work [11]. One research category focuses on

estimating missing entries based on observed values [12]; although

these methods work well when missing data are rare, they are less

e�ective when a signi�cant amount of data is missing. Another

category of work is to utilize matrix completion to �nd a matrix

with a low-rank for the observed entries, and this has been actively

studied in statistical learning [13], information retrieval [14], and

signal processing [15]. Recently, several methods have extended the

matrix completion approach to tensor completion [16][17]. Liu et

al. [16] estimated the missing data in video streams via tensor com-

pletion generalized from matrix completion methods, while Wang

et al. [18] proposed a tensor completion method that preserves

temporal consistency in video data to estimate the missing values

across frames. However, few of these studies jointly consider both

temporal consistency and spatial relationships in high dimensional

data.

Feature selection in the presence of time-lagged interac-
tions. Feature selection that considers feature interactions has



been a�racting research interest for some time. For instance, to

enforce speci�c interaction pa�erns, Harrell et al. [19] employed a

conventional step-wise model selection technique with hierarchical

constraints, while Lim and Hastie [20] worked with a hierarchical

group-lasso regularization to learn pairwise interactions. Unfortu-

nately, none of these lasso-based approaches work for time-lagged

interactions in price data. Although Park et al. [21] and Suo et al.

[22] proposed two di�erent time-lagged regression methods for

time series data, both employ lagged weights with hard constraints,

which is too strong an assumption for price data.

3 PROBLEM DEFINITION
In this section, the problem addressed by this research is formal-

ized. �e notations used are summarized in Table 1, in which the

terminology of tensors speci�ed in [23] is applied.

Let us denote X = {xt }Tt as a sequence of tuples that contains

hyper-local prices collected by local data contributors with spa-

tiotemporal information. Here, xt = (f , l , t ,p) represents a price

tuple composed of product type f , geo-location l , timestamp t , and

price p. For example, a price tuple for �our in the Brazilian market

can be represented as (Flour, [38.89,-77.24], 03/20/2014, 6.35). Each

price tuple can be geo-coded into an administrative region based

on their geographic coordinates such as the city (e.g., Los Angeles)
or neighborhood (e.g., Harlem in the New York City borough of

Manha�an). �e region price of a product in one time interval can

be formally de�ned as follows:

De�nition 3.1. Region Price. Let us use the set X {l,t } to denote

prices of product f , ∀xk ∈ X {l,t } for region l and time interval t .
�e region price of product f in location l and time interval t can

now be de�ned as x {f ,l,t } =
1

K
∑K
k=1

p{f ,k } , where p{f ,k } is the

price for the k-th tuple in X {l,t } of product f and K is the size of

set X {l,t } .

Organize the region prices in the form of a data tensor T ∈
R
F×L×T

in three dimensions: product, region and time interval.

�e price of product f in region l and time interval t can now

be represented as T{f ,l,t } . Speci�cally, the elements T{0,l,t } = 1

serve as a dummy feature to provide a compact notation for the

bias parameter in the forecasting model. Denoting the position set

of missing values as Ω, we can set the missing values in TΩ = 0.

However, simply se�ing missing values as zero will break the price

coherence in both spatial and temporal directions. To solve the

problem, we create another data tensor variable X to represent the

Table 1: Math Notation.

Notations Explanations
F , L, T Feature, location and time interval number

P Time intervals for temporal weights

K Dimensions of price data tensor

W ∈ RF×L×P
Time-lagged weight tensor

X ∈ RF×L×P
Hyper-local price data tensor

X(i ) ∈ RF×L×P
Unfolded data tensor in i-th dimension

X(f ) ∈ RF×L×P
Unfolded data tensor in feature dimension

X{n} ∈ RF×L×P
Feature tensor in 3 dimensions

Y ∈ RL×P
Predicted ground truth matrix

D ∈ RL×L
Auxiliary matrix for temporal di�erence

real price data based on the Law of One Price [24] which is de�ned

as below.

De�nition 3.2. Law of One Price(LoP). LoP is an economic

concept which posits that “a good must sell for the same price in

all locations”. A�er considering the transportation and transaction

fee, the law can be de�ned as:

φa
φb + cb→a

= 1 (φa > φb )

whereφa andφb are the prices at locationsa andb, respectively, and

cb→a is the trading fee (including transportation and transaction

fees) per unit from location b to a. �erefore, the de�nition of the

new data tensor based on spatiotemporal price prior knowledge is

as follows:

De�nition 3.3. Completed Price Tensor. Given a data sensor

T with missing values, the completed price tensor is the data tensor

that has the following properties: 1) TΩ̄ = XΩ̄ , where Ω̄ is the set of

data positions containing data, 2) �e prices in X possess temporal

price coherence, and 3) �e price at di�erent locations obeys the

LoP property.

Applying the above de�nitions, the problem addressed in this

paper can be formulated as follows:

Problem Formulation: Given the hyper-local price data tensor

T in spatial and temporal dimensions from time interval t to t + p,

the goal is to predict the occurrence of future eventYτ ,l for location

l at time interval τ . In addition, τ = t+P+δ , where δ > 0 is the lead

time and P is the length of continuous time period considered in our

model. Formally, this problem is formulated as learning a mapping

function from price tensor data to predict future spatiotemporal

events: f : T{t :t+P,l } → Yτ ,l , where f is the forecasting model.

4 MODEL
In this section, we propose a new model to forecast spatiotemporal

events based on hyper-local prices. �e new tensor based event

forecasting model minimizes the following penalized empirical loss:

min

W,X
L(W, X) + Ωt (W) + Ωs (X) s .t . XΩ̄ = TΩ̄ (1)

where L(W,X) is the empirical loss function and feature weight

tensorW ∈ RF×L×P
is the parameter of the forecasting model

in feature, location and time dimensions, Ωt (W) is the regulariza-

tion term that encodes the interactions between continuous price

features, and Ωs (X) is the regularization term that ensures the

coherence between missing values and existing values.

4.1 Loss Function
�e event forecasting error L(W,X) is de�ned as the sum of the

empirical errors of the prediction values against the labels Yτ ,l . For

the binary case event forecasting problem, the loss function L can

be the logistic loss [25], as follows:

L(W, X) = −
T∑
t=1

L∑
l=1

[Yτ ,l logh(Wl � X{l,t :t+P−1})

+ (1 − Yτ ,l ) log(1 − h(Wl � X{l,t :t+P−1}))]
(2)

whereWl is the weight matrix at location l . X{l,t :t+P−1} is the data

matrix for location l and the time interval range from t to t + P − 1.

�e operator � is the summation of the Hadamard product of two



matrices such that A � B = ∑
i, j Ai j · Bi j . For the multiple classes

event forecasting problem, the so�max [26] loss function can be

used.

4.2 So� Time-lagged Weight Feature Selection
�e feature weight regularization terms are shown as follows:

Ωt (W) = λ1

P,L,F∑
p=2,l, f

max( |W{f ,l,p−1} | − |W{f ,l,p} |, 0) + λ2 ‖W(f ) ‖1

(3)

where λ1 and λ2 are the parameters for each term. When predicting

an outcome at time t based on the prices at the previous P time

points, it is natural to assume that the coe�cients decay as we move

farther away from t as shown in Figure 1(a). However, far from

using a hard constraint [22], we propose instead a so� time-lagged

weight constraint to penalize the weights that break the assumption.

For example, if |W{f ,l,t−1} | > |W{f ,l,t } |, we can use the absolute

di�erence between the two weights as the penalty. Notice that the

feature weight can be negative if the feature has an inverse impact

on our predicted event. �e second term with L1 norm ensures the

sparsity of feature weights.

4.3 Missing Feature Values in the Presence of
Interactions

�e missing value regularization terms are as follows:

Ωs (X) = θ1

K∑
i=1

‖X(i ) ‖∗ + θ2

T ′−1∑
t=1

‖X{t+1} − X{t } ‖2F

+ θ3

F∑
f =1

T∑
t=1

Ψ (X{f ,t })
(4)

whereX(i) represents the unfolded tensor in its i-th dimension, K is

the dimension of tensor X, the data tensor time length T ′ = T + P ,

and θ1,2,3 are the parameters for each term. �e spatial coherence

functionΨ(x) is de�ned as:

Ψ(x) =
L∑
i=1

L∑
i, j ∈Γ

max(xi − x j −Cj,i , 0)

+max(x j − xi −Ci, j , 0)
where Γ is de�ned as the set Γ = {i, j |i , j,x j , 0}, and Ci, j
represents the trading fee required to shi� from location i to j.

�e �rst term in Eq (4) is based on the assumption that rows

in an unfolded tensor are not linearly independent; for example,

the prices of co�ee and co�ee beans are likely to be highly related

in di�erent locations. In order to �nd this coherence, we use the

nuclear norm ‖ · ‖∗, the tightest convex envelope for the rank of

matrices, to minimize the rank of the tensor in each dimension.

As shown in Figure 1(b), the second term is a smoothing factor to

ensure that the price change is continuous because the prices of

commodities do not change sharply in most circumstances. �e

third term is to constrain prices in di�erent locations according to

the Law of One Price [24].

To constraint the price in the data tensor to LoP, we use the

function Ψ(X) to penalize those locations that fail to satisfy the

law. For example, as shown in Figure 1(c), if φb = 50, and ca→b =
3, cb→a = 4, our purpose is to constrain φa within the range of

Algorithm 1: Hpef Algorithm
Input: T , Y
Output: solutionW, X

1 Initialize ρ = 1, X = T,W, Φ = 0,

2 Choose εr > 0, εs > 0

3 repeat
4 UpdateW, X, Φ by Equations (7) ∼ (21).

5 Update Lagrangian multipliers α s and βs by Equation (23).

6 Update primal and dual residuals r and s .

7 if r > 10s then
8 ρ ← 2ρ
9 else if 10r < s then

10 ρ ← ρ/2
11 else
12 ρ ← ρ
13 until r < εr and s < εs

[47, 54]. �e penalty for φa = 45 will then be max(45 − 50 −
4, 0) +max(50 − 45 − 3, 0) = 2. In contrast, if the price φa = 50,

which is within the range, the penalty is zero. Assuming that the

trading fee is distributed according to the Gaussian distribution:

cb→a ∼ N(µb→a , Σb→a ), we can use Cji = µ j→i as the normal

trading fee from j to i in the trading fee matrix C .

5 PARAMETER OPTIMIZATION
In this section, an ADMM (Alternating Direction Method of Multi-

pliers) based framework is proposed to solve the parameter opti-

mization problem in Section 4.

To decouple the overlapping terms in Equation 1, we introduce a

set of auxiliary variablesΦ = {Q,V,R,Mi ,U,S} and reformulate

the equation as follows:

min

W,X,Φ
L(W, X) + λ1

P,L,F∑
p=2,l, f

max( |V{f ,l,p−1} | − |V{f ,l,p} |, 0)

+ λ2 ‖R(f ) ‖1 + θ1

K∑
i=1

‖Mi (i ) ‖∗ + θ2

Nx −1∑
n=1

‖U{n+1} − U{n} ‖2F

+ θ3

F∑
f =1

Nx∑
n=1

Ψ (S{f ,n})

s .t .W = Q = R, V{f ,p,l } = |Q{f ,l,p−1} | − |Q{f ,l,p} |
X = U = S, X = Mi , i ∈ [1, K ] XΩ = TΩ

(5)

�e augmented Lagrangian function of Equation (5) is:

Lρ (W, X) = L(W, X) + 〈αq,W − Q〉 +
ρ
2

‖W − Q‖2F

+

P,L,F∑
p=2,l, f

〈αv {f ,l,p}, V{f ,l,p} − |Q{f ,l,p−1} | + |Q{f ,l,p} | 〉

+
ρ
2

P,L,F∑
p=2,l, f

‖V{f ,l,p} − |Q{f ,l,p−1} | + |Q{f ,l,p} | ‖2F + 〈αr ,W − R〉

+
ρ
2

‖W − R ‖2F +
K∑
i=1

〈βi , X − Mi 〉 +
ρ
2

K∑
i=1

‖X − Mi ‖2F

+ 〈αu, X − U〉 +
ρ
2

‖X − U‖2F + 〈αs , X − S〉 +
ρ
2

‖X − S‖2F
(6)

To solve the objective function in Equation (1) with multiple un-

known parametersW and X, we propose the hyper-local price



based event forecasting (HPEF) algorithm shown in Algorithm 1.

�is algorithm alternately optimizes each of the unknown param-

eters until convergence is achieved. Lines 4-6 show the updating

of each of the unknown parameters and residuals by solving the

sub-problems described below. �e derivation of S can be found in

Appendix B.

5.1 UpdateW
�e weight tensorW is learned as follows:

W = arg min

W
L(W) + 〈αq,W − Q〉 +

ρ
2

‖W − Q‖2F

+ 〈αr ,W − R〉 +
ρ
2

‖W − R ‖2F
(7)

which is a generalized logistic regression containing least squares

loss functions. Newton method can be performed to solve this

problem.

5.2 Update Q
�e auxiliary variable Q is learned as follows:

Q = arg min

Q
〈αq,W − Q〉 +

ρ
2

‖W − Q‖2F

+

P,L,F∑
p=2,l, f

〈αv {f ,l,p}, V{f ,l,p} − |Q{f ,l,p−1} | − |Q{f ,l,p} | 〉

+
ρ
2

P,L,F∑
p=2,l, f

‖V{f ,l,p} − |Q{f ,l,p−1} | − |Q{f ,l,p} | ‖2F

(8)

For notation simplicity, we de�ne Qp = Q{f ,l,p } and Wp =

W{f ,l,p } when feature f and location l are �xed. When p = 1, the

variable Q1 is learned as follows:

Q1 = arg min

Q1

〈αq1,W1 − Q1 〉 +
ρ
2

‖W1 − Q1 ‖2F

+ 〈αv 2
, V2 − |Q1 | + |Q2 | 〉 +

ρ
2

‖V2 − |Q1 | − |Q2 | ‖2F
(9)

�is problem can be divided into two sub-problems, in case

Q1 ≥ 0 and Q1 < 0. Each sub-problem is a quadratic programming

problem and is easy to solve. When Q1 ≥ 0, its optimal solution

Q1+ =
1

2ρ (αq1 +αv2)+ 1

2
(W1 +V2 + ‖Q2‖) if Q1+ ≥ 0; otherwise,

Q1+ = 0. Similarly, Q1− = 1

2ρ (αq1 − αv2) + 1

2
(W1 −V2 − ‖Q2‖) if

Q1− < 0; otherwise, Q1− = 0. �e optimal solution Q1 is chosen

between Q1+ and Q1− which has minimum loss.

When 2 ≤ p ≤ P − 1, the variable Qp is learned as follows:

Qp = arg min

Qp
〈αqp,Wp − Qp 〉 +

ρ
2

‖Wp − Qp ‖2F

+ 〈αvp, Vp − |Qp−1 | + |Qp | 〉 +
ρ
2

‖Vp − |Qp−1 | − |Qp | ‖2F

+ 〈αvp+1
, Vp+1 − |Qp | + |Qp+1 | 〉 +

ρ
2

‖Vp+1 − |Qp | − |Qp+1 | ‖2F
(10)

Although Qp relates to both the previous and next time periods, its

sub-problems are still quadratic programming problems. Similarly,

Qp+ = 1

3ρ (αqp − αvp + αvp+1) + 1

3
(Wp −Vp + ‖Qp−1‖ +Vp+1 +

‖Qp+1‖), Qp− = 1

3ρ (αqp +αvp −αvp+1)+ 1

3
(Wp +Vp − ‖Qp−1‖ −

Vp+1 − ‖Qp+1‖), and Qp is chosen between Qp+ and Qp− which

has the minimum loss.

When p = P , the variable QP is learned as follows:

QP = arg min

QP
〈αqP ,WP − QP 〉 +

ρ
2

‖WP − QP ‖2F

+ 〈αv P , VP − |QP−1 | + |QP | 〉 +
ρ
2

‖VP − |QP−1 | − |QP | ‖2F
(11)

QP only relates to its previous period and its sub-problems are

still quadratic programming problems. Similarly, QP+ = 1

2ρ (αqP −
αvP )+ 1

2
(WP −VP + ‖QP−1‖), QP− = 1

2ρ (αqP + αvP )+
1

2
(WP +

VP − ‖QP−1‖), and QP is selected between QP+ and QP− which

has the minimum loss.

5.3 UpdateV
�e auxiliary variableV is learned as follows:

V = arg min

V

P,L,F∑
p=2,l, f

〈αv {f ,l,p}, V{f ,l,p} − |Q{f ,l,p−1} | − |Q{f ,l,p} | 〉

+
ρ
2

P,L,F∑
p=2,l, f

‖V{f ,l,p} − |Q{f ,l,p−1} | − |Q{f ,l,p} | ‖2F +max(V{f ,l,p}, 0)

(12)

For notation simplicity, we de�ne Vp = V{f ,l,p } and Qp =
Q{f ,l,p } when feature f and location l are �xed. �e problem can

be divided into the combination of subproblems for eachVp (p ≥ 2):

Vp = arg min

Vp
〈αvp, Vp − |Qp−1 | + |Qp | 〉

+
ρ
2

(αvp, Vp − |Qp−1 | + |Qp |) + λ1 max(Vp, 0)
(13)

We de�ne the functions д and f as:

д(Vp ) = λ1 max(Vp, 0)

f (Vp ) = 〈αvp, Vp−|Qp−1 | + |Qp | 〉 +
ρ
2

(αvp, Vp − |Qp−1 | + |Qp |)
(14)

�e problem can be considered as the following iterative proce-

dure known as ISTA [27]:

Vk+1

p = arg min

Vp
д(Vp ) +

1

2η
‖Vp − (Vk

p − η 5 f (Vk
p ) ‖22 (15)

where k is the k-th iteration and η is the step size. In our case

where д(Vp ) = λ1 max(Vp , 0), the one-dimensional problem can

be solved by the following theorem:

Theorem 5.1. For the iterative shrinkage-thresholding problem of
д(x) = max(x , 0), which is de�ned as follows:

min

x

{
λmax(x , 0) + 1

2η
(x − x0)2

}
where x0 = xk − η 5 f (xk ). �e shrinkage operator of this problem
equals to:

Sλη (x0) =


x0 − λη, if x0 > λη

x0, if x0 < 0

0, otherwise

Proof. if x > 0, the problem converts to minx λx +
1

2η (x −x0)2,

its analytical solution is x = x0 − λη. When x < 0, the problem is

minx
1

2η (x − x0)2, whose analytical solution is x = x0. Otherwise,

x = 0. �



�e fast iterative shrinkage-thresholding version can be found

in Appendix A.

5.4 Update R
�e auxiliary variable R is learned as follows:

R = arg min

R
λ2 ‖R(f ) ‖1 + 〈αr ,W − R〉 +

ρ
2

‖W − R ‖2F (16)

�e problem can be solved by the so�-thresholding operator of L1

norm. Its analytical solution is:

R = foldf [Sλ1/ρ (W(f ) +
αr
ρ
)] (17)

where Sλ(a) = sдn(a)(|a | − λ)+ and foldf is the matrix describing

tensor folding in its feature dimension.

5.5 Update X
�e data tensor X is learned as follows:

X = arg min

X
L(X) +

K∑
i=1

〈βi , X − Mi 〉 +
ρ
2

K∑
i=1

‖X − Mi ‖2F

+ 〈αu, X − U〉 +
ρ
2

‖X − U‖2F + 〈αs , X − S〉 +
ρ
2

‖X − S‖2F
s .t .XΩ = TΩ

(18)

Similar to the weight tensorW, this is also a generalized logistic

regression with a least squares loss function. XΩ̄ can be solved by

Newton method, and all the remaining values in XΩ are equal to

TΩ .

5.6 UpdateMi
Each auxiliary variableMi is learned as follows:

Mi = arg min

Mi
θ1

K∑
i=1

‖Mi (i ) ‖∗ + 〈βi , X − Mi 〉 +
ρ
2

‖X − Mi ‖2F (19)

�e optimal solution toMi can be obtained by the so� thresholding

method [16]. Speci�cally, the analytical solution is:

Mi = foldi [D θ
1

ρ
(X(i) +

1

ρ
βi (i ))] (20)

where Dτ (·) = U Σ+V
T

and the i-th diagonal element of Σ+ is

max(0,σi − τ ). Suppose that the singular vector decomposition of

matrix · is U Σ+V
∗
, and denote the i-th diagonal element of Σ+ by

σi .

5.7 UpdateU
�e auxiliary variableU is learned as follows:

U = arg min

U
θ2

Nx −1∑
n=1

‖U{n+1} − U{n} ‖2F

+ 〈αu, X − U〉 +
ρ
2

‖X − U‖2F

(21)

To simplify the derivation, we introduce an auxiliary matrix Dl,n
to represent ‖U{n+1} −U{n } ‖2F as ‖U(f )Dl,n ‖2F , whereU(f ) is the

unfolded matrix in the feature dimension. �e analytical solution of

U is foldf [(αu +ρX(f ))(2θ2

∑Nx−1

n=1
DnD

T
n +ρ ∗ I )−1], where D {l,n }

is formally de�ned as:

Dn,l(i j ) =


−1, if i = j + L(n − 1)
1, if i = j + Ln

0, otherwise

(22)

5.8 Lagrangian Multipliers and Stop Condition
�e Lagrangian multiplier αr is updated as follows:

αq ← αq + ρ(W − Q), αr ← αr + ρ(W − R)
αv {f ,l,p} ← αv {f ,l,p} + ρ( |Q{f ,l,p−1} | − |Q{f ,l,p} |)
βi ← βi + ρ(X − Mi ), αu ← αu + ρ(X − U)
αs ← αs + ρ(X − S)

(23)

�e stop condition is determined by primal and dual residuals of

the (k + 1)th iteration, which are calculated based on the following

theorem. �e parameters in the theorem labeled with superscript k

(e.g.,Wk
) represent to its corresponding value in the kth

iteration.

Theorem 5.2. �e primal residual and dual residual of the algo-
rithm are as follows:

• Primal residual of objective function.
r = ‖W − Q‖F + ‖W − R ‖F + ‖X − U‖F

+

P,L,F∑
p=2,l, f

‖V{f ,l,p} − |Q{f ,l,p−1} | − |Q{f ,l,p} | ‖F

+

K∑
i=1

‖X − Mi | ‖F + ‖X − S‖F

(24)

• Dual residual of objective function

s =ρ( ‖Qk − Qk+1 ‖F + ‖Vk − Vk+1 ‖F + ‖Rk − Rk+1 ‖F

+ ‖
K∑
i=1

(Mk
i − Mk+1

i ) + Uk − Uk+1 + Sk − Sk+1 ‖F )
(25)

�e proof of �eorem 5.2 can be found in Appendix C.

6 EXPERIMENTAL EVALUATION
In this section, the performance of the proposed model HPEF is

evaluated using 6 real-world datasets from di�erent domains. First,

the experimental setup is introduced in Section 6.1, a�er which

the e�ectiveness and e�ciency of our model is evaluated against

several existing methods for a number of di�erent data missing

scenarios in Section 6.2. All the experiments were conducted on a 64-

bit machine with Intel(R) core(TM) quad-core processor (i7CPU@

3.60GHz) and 32.0GB memory.

6.1 Experimental Setup
6.1.1 Datasets and Labels. In this paper, 6 di�erent datasets

from di�erent domains were used for the experimental evaluations,

as shown in Table 2. Among these, two datasets composed of

commodity price data were used to forecast civil unrest events for

two di�erent countries in South America. �e commodity price

data were provided by Premise
3
, who collected their price data via

mobile phones from their network of data contributors located in

30 countries. Data for the period from September 1, 2013 to May 4,

2014 were used for training, while June 1, 2014 to February 1, 2015

data was used for the performance evaluation. �e resulting event

3
h�ps://www.premise.com/



Table 2: Characteristics of datasets used (CU=civil unrest;
RE=real estate)

Dataset Domain Locations Time Period Missing Data
Argentina CU 4 09/2013 - 02/2015 73.35%

Brazil CU 10 09/2013 - 02/2015 68.82%

New York RE 16 01/2015 - 07/2016 49.61%

Los Angeles RE 13 05/2015 - 08/2016 56.19%

New Orleans RE 4 06/2015 - 06/2016 65.32%

San Francisco RE 5 05/2015 - 07/2016 68.18%

forecasts were validated against a labeled civil unrest event set,

referred to as the gold standard report (GSR), which was exclusively

provided by MITRE [28]. �e GSR is a collection of civil unrest

news reports from the most in�uential newspaper outlets in Latin

America [29]. An example of a labeled GSR event is given by the

tuple: (STATE=“Para”, COUNTRY=“Brazil”, DATE=“12/2014”).

�e other four datasets were collected to track real estate val-

ues in the United States based on short-term rental prices. �e

rental prices were collected from the company Airbnb
4

for four

cities in the United States, as shown in Table 2. Residential prop-

erties were divided into 46 di�erent categories according to their

numbers of bedrooms, bathrooms and their other facilities, which

served as the features for our model. Within each city, its di�er-

ent neighborhoods were used as spatial locations. For example,

16 neighborhoods were selected in New York as shown in Table 2.

�e data for the �rst 60% of the time period covered was used for

training, while the remaining 40% was used for the performance

evaluation. �e forecasting results for the trends in house values

were validated against the actual real estate values reported by Zil-

low
5

for the same period. An example of a house value change event

is: (Neighborhood=“Glendale”, City=“Los Angeles”, Date=“07/2016”,

Event=“Raise/Down”).

6.1.2 Parameter Se�ings and Metrics. �ere are 5 tunable pa-

rameters in the proposed HPEF model, which could be divided

into two groups, namely feature weight parameters λ1,2 and data

completion parameters θ1,2,3. Based on a 10-fold cross validation

on the training set, these were set as λ1 = 0.2, λ2 = 0.1, θ1 = 0.2,

θ2 = 0.3, and θ3 = 0.3.

In the experiment, the event forecasting task was to predict

whether or not there would be an event during the next time step

for a speci�c location. For the civil unrest datasets, the time step

was set at one week and the location as a city. For the real estate

dataset, the time step was set at one month and the location as a

neighborhood. To validate the prediction performance, di�erent

metrics were adopted: the True Positive Ratio (TPR) designates

the percentage of positive predictions that successfully match the

events that truly happen, while the False Positive Ratio (FPR) de-

notes the percentage of positive predictions that are actually false

alarms. A receiver operating characteristic (ROC) curve was also

utilized to evaluate the forecasting performance as its discrimi-

nation threshold for each predictive model was varied. Finally,

an area under ROC curve (AUC) measure was also applied as a

comprehensive asessment of forecasting performance.

4
h�ps://www.airbnb.com

5
h�p://www.zillow.com/

6.1.3 ComparisonMethods. �e following methods are included

in the performance comparison presented here: 1) Logistic regres-

sion (LR) [25]. For each location, LR utilizes a logit function to map

the price observations into future event occurrences; 2) LASSO

[30]. Di�erent LASSO models are built for corresponding locations.

�e regularization parameter is set as 0.2 based on a 10-fold cross

validation on the training set; 3) Multitask Learning(MTL) [9]. In

the multi-task model, each task represents the forecast for each lo-

cation. �e regularization parameters λ1 = 0.02 and λ2 = 0.005 are

set based on a 10-fold cross-validation; 4) Ordered LASSO (OL)[22].

In ordered LASSO, the time-lagged order constraint is applied on

the continuous price data. �e regularization parameter λ = 0.1
is set based on cross-validation; 5) LASSO-TC and 6) OL-TC are

LASSO and OL methods based on the tensor completion [16] data

with low-rank constraints, respectively.

6.2 Performance
In this section, the e�ectiveness in terms of the AUC and ROC

curves and the runtime e�ciency are analyzed for all six of the

comparison methods and the results compared to those obtained

using HPEF.

6.2.1 Event forecasting performance on AUC. Table 3 compares

the e�ectiveness and robustness achieved by the di�erent methods

when forecasting events with di�erent missing data ratios. �e

AUC measure has been adopted to quantify the performance and the

original percentages of missing data are underscored. �e missing

data ratio was then manually increased by randomly reducing

the number of price data points in both the spatial and temporal

dimensions.

�e results shown in Table 3 demonstrate that the methods that

take into account the temporal dependence of price and spatiotem-

poral missing values performed be�er. Speci�cally, the performance

of HPEF outperformed the other methods for nearly all of the dif-

ferent missing data ratios. LASSO-TC and OL-TC also performed

competitively with high missing ratios in three datasets. Look-

ing across the di�erent missing data ratios, LASSO-TC and OL-TC

achieved be�er robustness against missing values than their origi-

nal versions, LASSO and OL, that do not consider missing values.

For example, the performance of LASSO dropped an average 25%

when the missing data ratio increased by 20% for most datasets. In

contrast, HPEF was able to handle the missing value problem in

multiple data sources, dropping on average less than 10% when the

missing data ratio increased by more than 20%. MTL was also not

particularly sensitive to the change in missing values, largely due

to its ability to handle the lack of data by sharing the information

across di�erent tasks. In all, HPEF outperformed all the other meth-

ods in 4 out of the 6 datasets for all the di�erent missing data ratios

by 7% on average, and achieved the second best performance on

the other 2 datasets. �is is because HPEF is capable of handling

the two crucial challenges, namely temporal price dependence and

high missing value ratios, e�ectively.

6.2.2 E�iciency of running time. �e right hand column of each

dataset in Table 3 shows the training time e�ciency comparison

for HPEF and the six competing methods. �e e�ciency evaluation

results for the other missing data ratios follow a similar pa�ern



Table 3: Event forecasting performance based on area under the curve (AUC) measure.

Argentina(CU) Brazil(CU) New York(RE)

73% 85% 95% RT(ms) 73% 85% 95% RT(ms) 50% 75% 90% RT(ms)

LR 0.577 0.541 0.375 3.02 0.505 0.474 0.499 4.20 0.338 0.394 0.403 8.75
LASSO 0.577 0.553 0.366 3.83 0.588 0.562 0.491 35.84 0.456 0.326 0.354 66.46

MTL 0.579 0.568 0.410 5.10 0.528 0.498 0.506 6.10 0.343 0.373 0.361 19.79

OL 0.634 0.601 0.376 151.81 0.550 0.524 0.416 217.33 0.380 0.359 0.365 97.29

LASSO-TC 0.569 0.578 0.451 10.51 0.586 0.605 0.501 25.47 0.449 0.354 0.384 66.67

OL-TC 0.651 0.612 0.431 153.31 0.601 0.611 0.540 215.31 0.417 0.433 0.443 115.21

HPEF 0.723 0.621 0.589 237.26 0.653 0.645 0.613 388.68 0.491 0.452 0.425 265.23

Los Angeles(RE) New Orleans(RE) San Francisco(RE)

56% 80% 90% RT(ms) 65% 80% 95% RT(ms) 68% 80% 95% RT(ms)

LR 0.577 0.479 0.441 7.42 0.582 0.481 0.449 8.58 0.530 0.555 0.424 5.53
LASSO 0.554 0.486 0.390 66.92 0.583 0.491 0.476 35.17 0.564 0.558 0.435 35.38

MTL 0.557 0.520 0.444 9.97 0.577 0.543 0.572 16.50 0.543 0.543 0.521 6.75

OL 0.523 0.506 0.426 20.00 0.574 0.506 0.504 282.33 0.466 0.504 0.501 206.13

LASSO-TC 0.511 0.463 0.526 68.21 0.635 0.632 0.617 22.08 0.572 0.530 0.446 38.88

OL-TC 0.520 0.516 0.529 19.74 0.567 0.563 0.495 265.58 0.520 0.521 0.510 93.38

HPEF 0.571 0.566 0.558 132.45 0.696 0.628 0.598 374.13 0.632 0.607 0.586 265.81

to that shown in Table 3 and are not provided due to space limi-

tations. �e running times on the test set for all the comparison

methods were e�ectively instant (i.e., less than 0.1 millisecond for

each prediction), so these are also not provided here. According to

Table 3, the running time (RT) of the LR method was around 6.3

milliseconds per prediction, outperforming all the other methods.

OL and HPEF both required hundreds of milliseconds on each pre-

diction. However, the running times achieved by these methods

were all well below 11 hours for a 2-year-long training sets for

both the week and month-wise event forecasting tasks, making this

eminently practical for real-world applications.

6.2.3 Event forecasting performance on ROC curves. Figure 2

illustrates the event forecasting performance ROC curves for 6

datasets in two domains, namely civil unrest and real estate model-

ing. For the 4 real estate datasets shown in Figures 2(d)-(f), HPEF

performs the best overall, with ROC curves covering the largest area

above the axis. �e ROC curves for HPEF are consistently above

those of the other methods when FPR is less than 0.4 in datasets

including New York, New Orleans, and San Francisco. For the

Brazilian dataset, OL-TC performs best when FPR is smaller than

0.5, while HPEF outperforms the other methods when FPR > 0.5.

OL also demonstrates a quite competitive performancs for the Ar-

gentina dataset when FPR is high. MTL generally provides an

unsatisfactory performance, but its performance is robust against

missing data, as can be seen in Table 3.

7 CONCLUSION
In this paper, a novel spatiotemporal event forecasting model based

on hyper-local price data has been proposed to characterize tempo-

ral price dependence, accommodate spatiotemporal missing values,

and e�ectively apply economic domain knowledge. To achieve

these goals, we designed a so� time-lagged feature selection model

combined with price data completion based on economic domain

knowledge. An e�cient algorithm for parameter optimization is

proposed to solve the optimization problem. Extensive experiments

on 6 real-world datasets with multiple data sources demonstrated

that the proposed model outperforms other comparable methods

for di�erent ratios of missing values. One of our current directions

of future work is to extend these methods to develop a continuous-

valued indicator of the societal phenomena of interest leveraging

the underlying hyper-local data.
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A FISTA OF V UPDATE
For the fast iterative shrinkage-thresholding algorithm (FISTA)[27]

of д(x) = max(x , 0) can be solved as follows.

ys+1 = arg min

x
λmax(x , 0) + β

2

(x − x ′s )2

xs+1 = (1 − γs )ys+1 + γsys

where λ0 = 0, λs =
1 +

√
1 + 4λ2

s−1

2

γs =
1 − λs
λs+1

,x ′s = xs − η 5 f (xs )

where s is the iteration number. Its shrinkage operator is:

ys+1 =


x ′s − λ

β , if x ′s >
λ
β

x ′s , if x ′s < 0

0, otherwise

xs+1 = (1 − γs )ys+1 + γsys



(a) Argentina (b) Brazil (c) New York

(d) Los Angeles (e) New Orleans (f) San Francisco

Figure 2: Receiver operating characteristic (ROC) curves depicting performance on di�erent datasets.

B DERIVATION OF S
�e auxiliary variable S is learned as follows:

S = arg min

S
θ3

F∑
f =1

T∑
t=1

Ψ (X{f ,t })

+ 〈αs , X − S〉 +
ρ
2

‖X − S‖2F
(26)

�e spatial coherence functionΨ(x) is:

Ψ(x) =
L∑
i=1

L∑
i, j ∈Γ

max(xi − x j −Cj,i , 0)

+max(x j − xi −Ci, j , 0)

where Γ set is de�ned as Γ = {i, j |i , j, sj , 0}. For notation

simplicity, we de�ne si = S {f ,i,n } , c ji = C {j,i } , αsi = αs {f ,i,n } ,
xi = X{f ,i,n } . So for each si , its augmented Lagrangian function is:

Lsi =θ3

L∑
i, j ∈Γ
{max(si − sj − c ji , 0) +max(sj − si − ci j , 0)}

+ 〈αsi ,xi − si 〉 +
ρ

2

‖xi − si ‖2F

Introducing two auxiliary sets Γin = {i, j |si − sj − c ji ≥ 0, sj ,
0, i , j} and Γout = {i, j |sj −si −ci j ≥ 0, sj , 0, i , j}, the objective

function can be rewri�en as:

Lsi =θ3

L∑
i, j ∈Γin

(si − sj − c ji ) + θ3

L∑
i, j ∈Γout

(sj − si − ci j )

+ 〈αsi ,xi − si 〉 +
ρ

2

‖xi − si ‖2F

=
ρ

2

s2

i + (θ3‖Γin ‖ + θ3‖Γout ‖ − αsi − ρxi )si + B

(27)

where ‖ · ‖ is the size of set and B is the constant in regardless

of si . Considering the property of equation (27), the problem can

be solved by �eorem B.3.

Lemma B.1. �e value of si is directly proportional to ‖Γin ‖ and
inversely proportional to ‖Γout ‖, when �xing the value of sj .

Proof. Because the possible value set of sj is a �nite set of

discrete number, where j = 1, ..,L(j , i), when increasing si , the

number of j ∈ {1..L} that satis�es the condition si−sj−c ji increases.

So si is directly proportional to ‖Γin ‖. Similarly, si is inversely

proportional to ‖Γout ‖. �

Lemma B.2. �e domain D of si can be divided into N �nite sub-
domains, and for each sub-domain Dn , ∀si ∈ Dn map to the same
values of ‖Γin ‖ and ‖Γout ‖.

Proof. As si is proportional to ‖Γin ‖ and the value of ‖Γin ‖ is

�nite, the domain D of si can be divided into �nite sub-domains

Din = {Din
1
, ...,Din

P }. For each sub-domain Din
p ∈ Din

, ∀si ∈ Din
p



has the same ‖Γin ‖ value. Similarly, ∀si ∈ Dout
p has the same

‖Γout ‖ value. Because all the sub-domains in Din
increases and

sub-domains in Dout
decreases, there are �nite combination of the

domain Din
and Dout

, in which si maps to the same ‖Γin ‖ and

‖Γout ‖ values. �

Theorem B.3. Minimization of the equation (27) can be solved by
minimizing the values of its �nite convex subproblems.

Proof. As si can be divided into �nite domains with correspond-

ing ‖Γin ‖ and ‖Γout ‖, the problem of equation (27) can be divided

into �nite subproblems according to the domain division. Each

problem with �xed ‖Γin ‖ and ‖Γout ‖ is a quadratic programming

problem which is convex, thus the minimum value of each subprob-

lems is the solution of equation (27). �

C PROOF OF THEOREM 5.2
Proof. �e primal residual can be easily deduced from the pri-

mal feasibility according to the objective function directly. �e

deduction of the dual residual is elaborated in the following. �e

dual feasibility of the objective function is listed in the orderW,

Q,V , R, X,Mi ,U, S:

0 ∈ ∂L(W) + α ∗q + α ∗r , 0 ∈ α ∗q + α ∗v , 0 ∈ α ∗v , 0 ∈ α ∗r

0 ∈
K∑
i=1

β ∗i + α
∗
u + α

∗
s , 0 ∈

K∑
i=1

β ∗i , 0 ∈ α ∗u, 0 ∈ α ∗s
(28)

where the variables with superscript ∗ denote the optimal solutions.

Notice that the auxiliary variables always satisfy the dual feasibility

requirement, therefore they have no dual residual. For variable X,

we know that:

0 ∈
K∑
i=1

β ∗i + α
∗
u + α

∗
s =

K∑
i=1

(βki + ρ(Xk+1 − Mk
i ))

+ αku + ρ(Xk+1 − Uk ) + αks + ρ(Xk+1 − Sk )

∈
K∑
i=1

(βk+1

i + ρ(Mk+1

i − Mk
i )) + αk+1

u + ρ(Uk+1 − Uk )

+ αk+1

s + ρ(Sk+1 − Sk )

(29)

�erefore, the dual residual ofX is ρ‖Mk
i −M

k+1

i )+Uk −Uk+1+

Sk − Sk+1‖F . Similarly, the same method can be applied to prove

the dual residuals with respect to other parameters. �
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