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Abstract—Cybersecurity event detection is a crucial problem
for mitigating effects on various aspects of society. Social media
has become a notable source of indicators for detection of diverse
events. Though previous social media based strategies for cyber-
security event detection focus on mining certain event-related
words, the dynamic and evolving nature of online discourse
limits the performance of these approaches. Further, because
these are typically unsupervised or weakly supervised learning
strategies, they do not perform well in an environment of biased
samples, noisy context, and informal language which is routine
for online, user-generated content. This paper takes a supervised
learning approach by proposing a novel multi-task learning based
model. Our model can handle diverse structures in feature space
by learning models for different types of potential high-profile
targets simultaneously. For parameter optimization, we develop
an efficient algorithm based on the alternating direction method
of multipliers. Through extensive experiments on a real world
Twitter dataset, we demonstrate that our approach consistently
outperforms existing methods at encoding and identifying cyber-
security incidents.

I. INTRODUCTION

Cybersecurity incidents have garnered increased attention
from the public due to their potentially tremendous impacts
on society. For example, several high profile security events
happened in recent years including Equifax data breach which
exposed the vital information of 143 million people and
Yahoo data breach which impacted 3 billion user accounts. In
addition to these, there are countless attempted and successful
account hijackings aimed at personal and corporate social
media accounts. Traditionally, the problem of cyberattack
detection is framed as anomaly detection at the network level.
For example, Davis et al. [1] and Kwon et al. [2] leverage
network tarffic data to detect certain types of attacks. How-
ever, this kind of cyberattack detection approach is difficult
to generalize across different types of cyberattack, and the
requisite data is usually expensive to obtain. Based on the
intuition that information about organizational compromise
can originate outside the organization, we look to open source
indicators (e.g., Twitter messages), which is argued carrying
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rich security-related discussions for ongoing cyberattacks [3]],
as a source of information for cyberattack detection.

The motivation for this research is thus to mitigate the
impacts of cyberattacks by detecting and identifying their
occurrences at an early stage using data from social media.
Open source indicators have been used as real-time “sensors”
for detecting and forecasting social incidents such as civil
unrest [4]], [5]], disease outbreaks [6], and elections [7]]. Most
current work is focused on unsupervised or weakly supervised
learning methods which address the problem by mining key-
words specific to a type of cyberattack. For instance, Ritter
et al. [3] propose a weakly supervised method to capture
cyberattack events by training with annotated samples from
Twitter and fixed contextual feature sets. Khandpur et al. [§]]
leverage the dynamically evolving nature of cyberattacks with
an unsupervised method to identify tweets related to cyberse-
curity incidents via queries dynamically expanded from a set
of fixed seed queries.

These approaches suffer from the following challenges.
(1) The sparsity of cyberattack features. Among all the
linguistic clues hidden in a tweet’s content, only a small
portion of these “particles” play the crucial role of hinting at
ongoing cybersecurity incidents. (2) The ability to capture
weak signals. Events like the hijacking of individual social
media accounts or data leakage from small organizations
typically cause only a small range of discussion on Twitter.
Such weak signals are often missed by unsupervised and
weakly supervised learning methods. (3) Generalization of
models for different kinds of security events. Previous
studies which analyze network data are hard to generalize
because different types of cyberattack imply different mecha-
nisms of detection. On the other hand, existing methods which
use social media data are typically designed to identify a
specific type of incident by identifying linguistic clues related
to a particular type of malicious activities such as DDoS
attacks, data breaches, or account hijackings. As a result,
this class of methods poorly suited for generalizing to all
types of cyberattack. (4) Insufficiently exploiting model-wise
relatedness in learning models. Most of the signal from
Twitter data is generated by victims. As a result, we argue
that the critical information from tweets mostly relates to the
consequences of cyberattack. This information can involve
different vocabulary across domains. For instance, a cyber-
attack on a retail business or e-commerce website is likely to
involve credit/debit card information, different from an attack
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on medical service providers which might expose patients’
health information. Alternatively, the same vocabulary may
be shared across distinct types of cyberattack. For instance,
“hacked” could refer to an attempt to steal information from
a government organization or it could refer to a DDoS attack
on an internet content provider.

To address all these technical challenges, this paper presents
a novel supervised learning model: the multi-type feature-
block regularized multi-task learning model (MFBR).
MFBR treats detection of each type of incident as a task and
can handle multiple types of relatedness among tasks in the
problem space. Thus, it better characterizes the feature space
for detection of cyberattacks. The main contributions of this
research are as follows:

o Formulating a multi-task learning framework for cy-
berattack event detection. Different from existing work,
we formulate the problem of detecting different kinds of
security events as a multi-task supervised learning prob-
lem. In the proposed method, models for different types
of security events are jointly optimized and are enhanced
by satisfying constraints which describe different types
of relatedness across tasks.

o Modeling multi-type task relatedness in feature space.
Based on the thorough analysis of messages related to
cybersecurity incidents on social media, we exploit three
types of task relatedness in order to guide models to
share knowledge across tasks while avoiding negative
knowledge transfer. These three types of relatedness
are governed by regularizers and constraints and cover
task-wise shared feature learning, task characteristic fea-
ture learning, and task-wise variably overlapping feature
learning.

o Developing an efficient algorithm to solve the pro-
posed model. The optimization of the proposed multi-
task model is a non-smooth, multi-convex, inequality-
constrained problem which is challenging to solve. By
introducing auxiliary variables, we design an efficient,
converging algorithm which decouples the original prob-
lem into several simpler optimization sub-problems using
ADMM.

¢ Conducting extensive experiments to validate the
effectiveness and efficiency of the proposed method.
The proposed model was evaluated on a dataset collected
from Twitter from August 2014 to October 2016. For
comparison, we implemented a broad range of state-of-
the-art methods including DTQE, LR, LASSO, MTL-
LASSO, RMFTL, and MTL-DM. The results demonstrate
that the proposed model consistently outperforms the best
of the existing methods along multiple metrics.

II. RELATED WORK

Cyberattack Detection via Network Data Analysis. A
large body of work focuses on constructing appropriate graph
representations to analyze network traffic data. The approach
frames the detection of different types of malicious behavior

(intrusion detection, malicious server detection, fraud detec-
tion, etc.) as a problem of anomaly detection across the graph
model [1f], [2]], [9], [10]. More recently, researchers sought
to explore the possibility of proactively characterizing and
forecasting malicious activities by leveraging network and
associated traffic flow information [[11]]. These methods usually
mine signals from vulnerable misconfigurations of a network
(e.g. misconfigured DNS, BGP networks) or from reputation
blacklists (e.g. malicious activities observed by spam traps).
For instance, Liu et al. [12], [[13]] built and trained a random
forest classifier to forecast whether a particular organization is,
or will be, under attack. Soska et al. [[14] collected historical
records of malicious websites on blacklists and trained a
classifier to predict whether a currently benign website will
become malicious in the future.

Cyberattack Characterization via Social Media Analysis.
In recent years, researchers have started making use of rich
security-related information and discussions in online media
such as blogs and Twitter [[15]], [16]]. For instance, Tsai
et al. [[17] built a probabilistic model to analyze security
information in tech weblogs to uncover ongoing cyberattacks.
Liao et al. [18]] focused on automatically mining and collecting
critical indicators of compromise (e.g. malware signatures,
botnet IPs) exchanged by security professionals through online
media. Exploring and leveraging vulnerability-related informa-
tion disseminated on Twitter, Sabottke et al. [[19] constructed a
classifier model to predict if a specific CVE vulnerability will
be exploited in practice. Not until very recently did researchers
start to use Twitter as a data source, because its broader user
population promises richer information collection for ongoing
cyberattacks from victims’ perspective. Ritter et al. [3] cast
the problem of cyberattack detection as a learning problem
and design a weakly supervised learning model to identify
and analyze security-related tweets. Khandpur et al. [8] design
an unsupervised mining method which aims to capture the
evolving nature of security-related discussions on Twitter and
from there to detect ongoing cyberattack events.

Spatiotemporal Event Detection on Twitter. = Our work is
also related, in general, to event detection [20], [21] using
Twitter. This covers various topics including natural disas-
ters [22]], criminal incidents [23]], disease outbreaks [24], pop-
ulation migrations [25]], trending news [26], [27], and activity
planning [28]. One common method for event extraction is
to use unsupervised learning models that work via keyword
matching, clustering, and topic modeling [29]-[31]. Example
applications are incidents detection of civil unrest events [4]]
and imminent threats to airports [32]]. Also, researchers have
used supervised learning models over social media data for
stock market predictions [33]], crime predictions [[34]] and civil
unrest detection [4].

III. PROBLEM SETUP

Let D = {D;,Ds,...,Ds} denote a collection of time-
ordered tweets organized along 7 time slots. Let )V denote a
set of different kinds of organizations of interest: businesses,
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Fig. 1: A schematic view of the multi-type feature-block regularized multi-task learning model for cybersecurity incident
detection (MFBR). In particular, regularizer #1 encourages models to select critical features (rows with red cells) shared across
tasks while ignoring noisy features (rows with white cells). Regularizer #2 guides models to learn the weights for features
(green cells) which can characterize incidents for a certain task. Regularizer #3 illustrates the learning of features that overlap
variably across tasks by considering task-wise shared features and element-wise features together.

educational institutions, government agencies, hospitals, indi-
vidual social media accounts, etc. Each tweet subcollection
Dy,t = 1,...,T is then further divided into [V| subsets
D/,j = 1,...,|V|, where each subset D] refers to all the
tweets in D, related to the j-th organization type in V.

Let F denote a set of keywords that are relevant to cy-
berattack topics, provided by domain experts [8]. For each
subset of tweets D/, we define a matrix X’ € RI7IXIFI
In each matrix, the (¢, k)-th entry refers to the frequency of
the k-th term of F in Twitter subcollection D?. By applying
this to each Twitter subcollection D7, we obtain a data tensor
X = {X7},j = 1,2,...,|V|. For each data matrix X7, the
corresponding response vector is denoted by Y7, where each
element in Y7 is a binary variable. Then the corresponding
response matrix for X is denoted by a |F| x |V| matrix Y.

Our problem is as follows: given a type of potential cyber-
attack target j € V, a time slot £ € T, and the corresponding
data vector X7, is there an ongoing cybersecurity event?
Mathematically, the problem can be formulated as learning a
function which maps X7 to Y? for each type of organization
jev: A ‘

F;(X3) = Yi. ey

The problem is challenging in three aspects: (1) Features
| 7| and data samples are within the same order of magnitude
which implies that this is a high-dimensional setting and,
therefore, likely to exhibit sparsity. Indeed, the sparsity is
likely more severe due to Twitter’s restrictive character count.
(2) Cyberattacks on some types of organizations (e.g. govern-
ment agencies, schools) are not widely discussed on Twitter.
These weak signals are hard to capture. (3) The relatedness
across different types of victim organizations varies in feature

space and is too crucial to be neglected.

IV. MODEL

In this section, we propose a new model MFBR to address
the challenges mentioned above. MFBR treats each type of
organization as a task, and can make use of the different types
of relatedness across distinct tasks simultaneously.

A. Multi-type task relatedness learning in feature space

Multi-task learning is especially useful when it is empow-
ered by relatedness across tasks — information which would
otherwise be lost by single task learning models. Furthermore,
to address real-world problems, it is essential to handle all
types of task relatedness in the feature space. This prompts us
to propose the following model:

VI m;
|Tl)| Z Z log (1 + exp{—[Yj]i[Z XéWg]J)

j=1i=1 decd

argmin
W,4,ded

+ Z AaRa(Wq)
ded
s.t. Wyeco >0,

2)
where m; refers to number of samples for the j-th task, index
operator [-], refers to the i-th element of the specified vector,
¢ = {.7-"1,...,]-'@‘} is a partition of feature space which
groups features into non-empty and non-overlapping subsets,
W, and X, are the corresponding block matrices in W and
X for features F, respectively, and R4(W ) is a regularizer
which models the task relatedness for features J; across tasks.
As for classification problems, the first term of the model is
the logistic loss. We counteract the noise in our Twitter data



source with the inequality constraint by which we suppose that
all features either positively related to or completely irrelevant
to cybersecurity events.

B. Cybersecurity Event Detection Model

For this cybersecurity event detection problem, it is prefer-
able to split the entire feature space F into three non-
overlapping groups due to the different types of task relat-
edness shared across tasks:

o Task-Wise Shared Features The presence of features
like “take over” and “take down” in a tweet does not ne-
cessitate an absolute occurrence of a cyberattack; rather, it
acts as a possible clue to event recognition in the Twitter
environment. For instance, the tweet, “If Lizard Squad
hacking group have taken down #PSN and #Xbox live,
then I hope they get tracked and locked up.” uses “take
down” to report a hacking incident.

o Task Characteristic Features In our formulation, each
task represents a type of organization (e.g., educational
institution), and there are features unique to individual
tasks which should not be shared across all tasks. For
instance, “patients”, “phi”, and “medical records” are
features related only to cyberattacks on healthcare and
medical providers.

o Task-Wise Variably Overlapping Features There
is a final set of features which are partially shared
over tasks. For instance, the keyword “phish” is directly
related to security events and is usually found in tweets
talking about cyberattacks on educational institutions and
medical service providers.

To address the above three types of task relatedness in fea-
ture space together, we reformulate the optimization problem
given in Equation [2] as follows:

V| m;

Wi, W3, W3, J=1i=1

+ M [ Willyy + A2 [Wall; + Asl|[Wall; o + )\4||W4||1

st.W=[Wi;, Wy, Wy +W,]" W;>0,d=1,....4,
3)
where W refers to the weight of task-wise shared features
to be identified by /31 norms, W refers to weight of task
characteristic features enforced by ¢; norms and W3, W to-
gether designate the weight of task-wise variably overlapping
features jointly governed by ¢; and ¢; o, norms. The above
three regularizeried structures are illustrated by regularizer #1,

regularizer #2 and regularizer #3 in Figure |1} respectively.
Several classic methods emerge as special cases of our
model proposed in Equation (3} If we let ® = {F} and
enforce the £, ; norm on all feature groups without inequality
constraints, our proposed model is reduced to the constrained
multi-task feature selection model [20]. If we let ® = {F} and
apply the ¢ norm on all feature groups in ®, our MFBR is then
reduced to LASSO [35]]. When A\; = Ay = 0 and inequality

constraints are removed, the proposed model is reduced to a
dirty model [36].

V. PARAMETER OPTIMIZATION

The objective function given in Equation [3| is a multi-
convex, non-smooth, inequality-constrained problem and is
hard to solve directly. One efficient way to solve this is to
transform the original problem into the following, equiva-
lent problem by introducing two sets of auxiliary variables:

4
O = {Wd}d , and O3 = {Wd}d 1

VI m;
argmin Z Z log [ 1+ exp{—[Y7], Z X] Wj
01,02,03 |V| J=1 i=1
+ A Wallyg + A2 Wally + As[ Wil o + Aal[Wall,

s.t. Wd = Wd,Wd = W’d,\/ﬂ\/d > O,d: 1,...,4,
“4)
where ©; = {Wd}izl are the original variables.

We use the alternating direction method of multipliers
(ADMM) [37] to decouple this problem into easier to handle
sub-problems. After further reformulating it into augmented
Lagrangian with penalty parameter p, we have:

V| m;

Jj=11i=1

argmin —-
©1,02,03

+ MW,y + A2 [Wally + A3 Ws
4

+>\4||W4H1

||1)oo

+ (||Wd—‘7\7d||g+ HWd—Wng)

—

M_,; INTRS)
U

+ (<fjd7 W, — WCD + <ﬁd7 W, — Wd>>

Y
Il

1

~ ~ 4 ~ ~ 4 .(5)

where U = {U},_, and U = {U},_, are Lagrangian
multipliers. Next, all parameters 01, O, O3, U, and U are
ptimized alternatively, as described in the following sections,

argmin VI Z Z log <1 + exp{—[Y], Z X W, ;mil convergence.
Wy

A. 1. Update ©,

Primal variables ©; are updated by solving the following
problem:

VI m;
argmln Vi ZZlog (1 + exp{—] YJ ZX]W] )

j=11i=1

> (W= Wl + [Wa = W)

+

M% l\D\b
Q.
— M%

(Ut Wa— Wa) + (U, Wa — W)

Q
Il

1

(6)
The problem as stated above is smooth and multi-convex
(i.e. the objective function is convex on each variable in
©; when the other three variables are fixed). This kind of
problem can be solved by block coordinate descent (BCD) [38]]
which iteratively updates one variable while fixing the other



variables. Note that, when all but one variable is fixed, our

objective function from Equation [6] denoted by 7, is smooth

and convex, and thus can be optimized using gradient descent:
OH 1

= (X)) "G+ Uy + Ug+ p2Wy - Wy — W
W, |V|( d) d a+p(2W4 d 427)

where
G=-Yo(I-10(I+exp{Z})),
Z=—-Yo (X1W1 + X2W2 + Xg(W3 + W4)) s

and o is the element-wise product (Hadamard product), ©
is element-wise division (Hadamard division), and I is the
identity vector.

B. 2. Update ©5 and O3

Dual variables in ©5 are updated by solving optimization
sub-problems:

argmin R(W.1) + (U, Wa— Wa) + 5| Wa = Wal3. ®)
\\Z
To solve the above problem, we reformulated it to an equiva-

lent proximal operator:

VV: ¢ Prox,-1y, (Ug+Wy), 9
where
AW =M Willyy,  £(Ws) = X[ W,
F3(W3) = Xa[Wally o (W) = Al [ W,

For each dual variable in ©Og, the following optimization
problem needs to be solved:
~ ~ —~ —~
W, « argmin (Ug, Wy — W) + 2[W, - Wa[3 (1)
Wa>0 2

Then, for each dual variable in ©3, we have

~

— o
W, « max(Wy+ —2,0). (12)
p

C. 3. Update U and U

Lagrangian multipliers are updated as follows:

~+ ~ ~—+, ~+ ~ -+
U, « Ui+ p(WS -W,),U; «+ Ui+ p(WS -W,).

(13)
Finally, primal and dual residuals are computed with
4
r=30 (IWa = Wall, + [Wa = Wall,),
=t (14)

4
~+ ~ —~+ —
s=pY [W; - Wa+W,; —Wy|,.
d=1

Pseudocode for the algorithm is given in Algorithm [T} In
particular, line 4 updates the primal variables ©;. Lines 5 and
6 update the dual variables ©5 and ©3. Lagrangian multipliers
are updated in line 7. Line 8 calculates both primal and dual
residuals. Lines 9 to 11 check the stop criterion.

Algorithm 1: Parameter Optimization for MFBR
1 Input: X,Y, Output: W;

2 Initialize p = 1,01,04,03,¢",¢*, MAX_ITER;
3 for k=1: MAX_ITER do

4 Update primal variables in ©; using
5 Update dual variables in Oy using (9}

6 | Update dual variables in ©3 using

7 Update Lagrangian multipliers using
8 Compute r and s using

9 if » <e€" and s < €° then

10 break;

11 end

12 end

VI. EVALUATION
A. Ground Truth and Dataset

Gold Standard Report (GSR) Collection.  For evaluating
the performance of our proposed method and for comparing it
to existing approaches, we compiled a ground truth database
which we call the gold standard report (GSR). We compiled
the GSR from two different sources:

o Privacy Rights Clearinghouse (PRC) E] is an inde-
pendently maintained collection of reports about cy-
bersecurity incidents organized by victim organization
type (businesses, educational institutions, medical service
providers, government agencies, etc.). We extracted 1,064
cybersecurity incidents from January 2014 to December
2016. After removing incidents that did not occur in the
United States of America (due to the concern of tweet
language) and that do not fall within the time range of our
Twitter dataset, we are left with 893 unique cybersecurity
events.

o Hackmageddon [7| is another reputable collection of
public reports about cybersecurity incidents. We ex-
tracted 1,307 cybersecurity incidents from January 2014
to November 2016. After filtering, again, on country and
time range, we have 1,064 unique cybersecurity events
from this collection.

In both databases, each event report comprises of an event
type, date, victim organization(s), and a short description.
Additionally, PRC publishes a type for each victim organi-
zation. To further organize and combine these two databases,
we manually label the victim type for each event based on
the definitions shown in Table [ These organization type
definitions are based on the organization code and PRC’s
organization type. In particular, we make following revisions
to PRC’s schema: (1) We redefine BSR to be organizations
which use customers’ financial data (e.g. credit/debit card
number, bank account number, etc.). PRC uses this label
less specifically for retail or online businesses. (2) IND is a

Uhttps://www.privacyrights.org/
Zhttps://www.hackmageddon.com/
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TABLE I: Definition of organization type.

ORG Definition
BSF  Financial and (non-health) insurance businesses.
Businesses that do not need customers’
BSO .. .
sensitive financial data.
Business that use customers’ payment method
BSR . . .
information such as credit card number, etc.
EDU  Educational institutions.
GOV  Government and military.
IND Individual social media (e.g. Twitter). accounts.
MED Medical providers and medical insurance services.

newly defined target type which refers to individual social
media accounts on platforms such as Twitter, Facebook, and
Vine. After merging the two databases and removing duplicate
records, our GSR contains 1,510 unique incidents from August
2014 to October 2016.

Twitter Dataset and Preprocessing. We evaluate the
proposed method with a large stream of tweets from GNIP’s
decahose (a 10% sample of all tweets) collected from August
2014 through October 2016. The entire dataset was subjected
to a preprocessing pipeline in which all retweets and non-
English tweets were removed; enrichment, including tokeniza-
tion and lemmatization, was performed using spaC and,
English stop words, words with diacritical marks, and user
mentions were eliminated from the tweets. As a result, we
obtain 4,975,992,550 enriched tweets from these 27 months
as the final dataset. Then, to evaluate our model, we separate
the dataset into two parts: (1) data from August 2014 to
December 2015, which serves as the training set for supervised
learning methods, and (2) data from January 2016 to October
2016, which serves as the test set for comparison of our
method against other methods (including a state-of-the-art
unsupervised learning method). Each of the two subcollections
are partitioned into a sequence of one-day-interval bins and
labeled by named entities mentioned within that bin and the
organization type corresponding to those entities.

B. Experiment Setup and Comparison Methods

All the models are validated and quantified based on four
metrics. Precision designates the ratio of correctly detected
events over all detected events. Recall denotes the percentage
of all cybersecurity incidents that are actually recognized by
the model. F-measure is the harmonic mean of precision and
recall which is defined as 2 - precision - recall /(precision +
recall). AUC is the area under the receiver operating charac-
teristic (ROC) curve and designates the model’s classification
ability as its discrimination threshold varies. A 10-fold cross
validation was utilized on training set to examine each pa-
rameter from 0.1 to 1 with step size 0.1. The values with
best performance on training set were selected. The following
methods are included in the performance comparison:

3https://spacy.io/

¢ Dynamic Typed Query Expansion (DTQE) [8]. DTQE
is a state-of-the-art unsupervised learning method which
works by identifying and extracting event-related tweets
using syntactic structures expanded from a small set
of seed event triggers. DTQE is performed on per-day
tweet subcollections from the test set with event triggers
provided in [8].

o Logistic Regression (LR) [39]. For each task, LR uses a
logit function to predict the probability of the occurrence
of a cybersecurity event based on per-day tweet subcol-
lections. A corresponding data matrix is generated using
feature counts and no tunable parameters are required.

o LASSO with Logistic Loss (LASSO) [4]. For each task,
LASSO is trained on a logistic loss, regularized with ;-
norm to control the feature sparsity. There is one tunable
parameter and it is searched from 0.1 to 1 with a 0.1 step
size. The data matrix is generated using feature counts.

e Multi-Task LASSO with Logistic Loss (MTL-
LASSO) [40]. A multi-task learning based LASSO
method which shares one penalty parameter for control-
ling sparsity across all tasks. The data matrix is generated
using feature counts and the only tunable parameter is
searched from 0.1 to 1 with a 0.1 step size.

o Regularized Multi-Task Feature Learning Model with
Logistic Loss (RMTFL) [20]. We replaced the least
squares loss with logistic loss to fit our proposed clas-
sification problem. The data matrix is generated using
feature counts and the only tunable parameter is searched
from 0.1 to 1 with a 0.1 step size.

o A Dirty Model for Multi-Task Learning with Logistic
Loss (MTL-DM) [36]. This uses logistic loss instead of
least squares loss. The data matrix is generated using fea-
ture counts and the two tunable parameters are searched
from 0.1 to 1 with a 0.1 step size.

C. Measuring Performance

Detection Performance on Precision, Recall and F-
measure. Table [lI| presents the comparison of our pro-
posed MFBR method with the competing techniques. Due
to space limitations, only 4 out of 7 tasks are reported; the
performance on the other 3 tasks, BSF, GOV and EDU are
similar to the 4 tasks shown. We quantify each method’s
performance with precision, recall, and F-measure. First of
all, though DTQE gets a relative high precision, its recall
and F-measure are much lower compared to the supervised
learning methods, which justifies our motivation of designing
a supervised learning method for cybersecurity event detection.
Also, Table shows that, in general, the performance of
regularized methods like LASSO, MTL-LASSO, RMTFL,
MTL-DM, MFBR consistently surpasses the non-regularized
method, LR, by 3% to 17% on F-measure. This demonstrates
that a sparsity structure exists in cyberattack feature space and
that the regularizers used in all of these models contribute
to filtering out unrelated features and ensuring the model’s
generalizability.
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TABLE II: Cybersecurity Events Detection Performance Comparison (Precision, Recall, F-measure, AUC)

Method BSO BSR MED IND
DTQE 0.63, 0.10, 0.17, NA  0.75, 0.09, 0.16, NA  0.33, 0.01, 0.01, NAJ  0.47, 0.19, 0.27, NA
LR 0.51, 0.80, 0.62, 0.57 0.29, 0.54, 0.38, 0.60 0.58, 0.37, 0.46, 0.56  0.22, 0.38, 0.28, 0.61
LASSO 0.52,0.97, 0.67, 0.55 0.28, 0.81, 0.41, 0.63  0.58, 0.48, 0.52, 0.56  0.31, 0.38, 0.34, 0.64
MTL-LASSO 0.51, 0.99, 0.68, 0.56 0.29, 0.73, 0.42, 0.66  0.61, 0.54, 0.57, 0.57 0.26, 0.48, 0.33, 0.66
RMTFL 0.52, 0.99, 0.68, 0.56  0.38, 0.65, 0.48, 0.71 0.52, 0.81, 0.63, 0.54  0.28, 0.52, 0.37, 0.66
MTL-DM 0.52, 1.00, 0.68, 0.56  0.33, 0.75, 0.46, 0.69 0.64, 0.59, 0.61, 0.60  0.29, 0.55, 0.38, 0.68
MFBR 0.52, 0.99, 0.68, 0.60 0.33, 0.87, 0.47, 0.72  0.55, 0.68, 0.61, 0.58  0.31, 0.67, 0.42, 0.70
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Fig. 2: Receiver operating characteristic (ROC) curves for the performances on different tasks.

In addition, Table shows that, in general, the multi-
task based methods have better performance than single task
models and that, for specific tasks, the performance of the
multi-task models varies. This demonstrates the benefits of
leveraging task relatedness and also suggests that, because
there are many types of relatedness in feature space, arbitrarily
modeling the problem with one kind of structure may increase
or decrease performance on specific tasks. This is because
multi-task models make use of knowledge across tasks to
improve the performance on the single task. If a wrong
structure is assumed, the model is misled into learning a
negative knowledge transfer across tasks. For example, MTL-
LASSO gains 5% improvement in F-measure against LASSO
for MED identification while its performance on the IND task
is diminished. On the other hand, MTL-DM, which encourages
the model to learn a balanced mixed sparsity structure, is
outperformed by RMTFL on the BSR task.

Furthermore, our proposed MFBR model can, in general,
achieve the best performance among multi-task learning meth-
ods on all tasks. Specifically, it avoids the negative knowledge
transfer of RMTFL in IND, and MTL-LASSO in BSR, and in-
creases performance in IND by 4% to 9% against other multi-
task based methods. This again demonstrates our motivation
for modeling multi-type task relatedness in feature space to
avoid negative knowledge transfer in a multi-task setting. Also,
during the experiments, we observed that the training time of
MFBR is slighly slower (40 - 50 seconds) than other multi-task
learning methods. This is expected because MFBR considers

multiple types task relatedness in the model which increase
the algorithm complexity and result in a multi-convex, non-
smooth and inequality-constrained problem.

Detection performance on ROC curves. The area under
the ROC curve (AUC) for four tasks is reported in Table
Figure 2] illustrates the performance of models on ROC curves
for three tasks. The ROC curve for the omitted other tasks
follows a similar pattern and is not reported here due to space
limitations. The curves are drawn by plotting the true positive
rate (TPR) against the false positive rate (FPR) at varying
cutoff points for positive and negative predictions. First of
all, we observe that, in general, the non-regularized method,
LR, has the worst performance for every organization type.
Figure [2] also shows that the multi-task model’s performance
varies on the task. For instance, RMTFL performs better
on BSR than on IND. However, our model consistently has
the best performance among multi-task models and gains a
significant boost against the single task model LASSO.

VII. CONCLUSION

We have demonstrated the effectiveness of our multi-task
based supervised learning model for cybersecurity detection
using social media data. Our work considers structures in
feature space that are exclusive to this application, which are
leveraged by means of a block-sparsity regularizer for features
shared across tasks, an element-wise regularizer for features
characteristic of a particular task, and a regularizer for variably



overlapping features. We also propose an efficient ADMM-
based algorithm to decouple the original, complex problem
into several easier-to-handle sub-problems which are solved by
block coordinate descent and proximal operators. Our empiri-
cal results demonstrate that our proposed model can effectively
benefit from modeling multi-type sparsity structures and can
achieve the best performance among both our multi-task based
comparison methods and a single task model on all tasks.
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