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Abstract

With the advance of sensors technologies, Multivariate Time
Series classification (MTSC) problem, perhaps one of the
most essential problem in time series data mining domain,
has continuously received a significant amount of attention in
recent decades. Traditional time series approaches based on
Bag-of-Patterns or Time Series Shapelet have difficulty deal-
ing with the huge amounts of feature candidates generated in
high-dimensional multivariate data, but have promising per-
formance in small training sets. By contrast, deep learning
based methods can learn low-dimensional features efficiently
but still suffer from the shortage of labeled data. In this pa-
per, we propose a novel MTSC model with attentional proto-
type network to take the strengths of both traditional and deep
learning based approaches. Specifically, we design a random
group permutation method combined with multi-layer convo-
lutional networks to learn the low-dimensional features from
multivariate time series data. To handle the issue of limited
training labels, we propose a novel attentional prototype net-
work to train the feature representation based on their dis-
tance to class prototypes with inadequate data labels. Be-
sides, we extend our model into its semi-supervised setting
by utilizing the unlabeled data. Extensive experiments on 30
datasets in public UEA Multivariate time series archive with
eight state-of-the-art baseline methods exhibit the effective-
ness of the proposed model.

1 Introduction

Time series is a set of real value observations sequentially
ordered by time. A multivariate time series is a set of co-
evolving time series which is typically recorded by a set
of sensors simultaneously over time. With the advance of
sensors technologies, Multivariate Time Series Classifica-
tion (MTSC) problem, identifying the labels for multivariate
time series records, has received a great amount of attention
in recent decades. Since time series data is a popular data
type that exists in a wide range of research domain and appli-
cations, multivariate time series classification models have
been used in many different real-world applications such as
Human Activities Recognition (Minnen et al. 2006), EEG
data analysis (Bagnall et al. 2018) and Motion Recognition
(Rakthanmanon and Keogh 2013).
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Most existing general time series classification ap-
proaches such as bag-of-patterns (Senin and Malinchik
2013) or time series shapelet (Ye and Keogh 2009) require
a parsing step to convert time series into an extensive set
of subsequences or patterns as feature candidates. The large
feature space generated makes the feature selection step dif-
ficult, and may result in low accuracy in multivariate case
(Schifer and Leser 2017b). Recently, deep learning based
methods (Karim et al. 2018b)(Zheng et al. 2014) achieve
promising performance in time series classification task.
These approaches can perfectly handle the issue concern-
ing huge feature space by learning a low-dimensional fea-
ture representation via convolutional or recurrent networks
directly from raw time series data. Moreover, neural net-
work solutions require less domain knowledge in time se-
ries data than traditional methods. But these approaches re-
quire a large number of labeled data to train the massive
model parameters. Different from computer vision and nat-
ural language processing domains, the availability of la-
beled data is limited in most of the time series datasets
(Bagnall et al. 2018)(Bagnall et al. 2017). For instance,
the “MotorImagery” dataset (Lal et al. 2005) provided by
the University of Tubingen for brain activity detection con-
tains only 378 labeled data samples, which is arduous to
train a deep learning model with thousands of model pa-
rameters (Neyshabur, Tomioka, and Srebro 2014). However,
the issue of limited training labels can be handled by tra-
ditional time series classification approach using distance-
based methods such as DTW-1NN (Shokoohi-Yekta, Wang,
and Keogh 2015). Table 1 presents the characteristics of ex-
isting MTS classification methods. We can see that tradi-
tional time series approaches can work with limited train-
ing samples, but they usually generate a large feature space
and require domain knowledge in time series data. In con-
trast to traditional approaches, the deep learning methods
can learn low-dimensional feature representations without
domain knowledge, but these approaches suffer from the
limitation of training labels.

To combine the advantages of traditional and deep learn-
ing MTSC approaches, this paper proposes a novel mul-
tivariate Time series classification model with Attentional
Prototype Network, named TapNet. TapNet is capable of ex-
tracting low-dimensional features from the multivariate time
series with little domain knowledge and handling the short-



Table 1: Characteristics of Existing Models

D(l):r?z;in Fi?t?]lrle Short of | Unlabeled
Method Labels Data
Knowledge Space
DTW Vv V4
Shapelet 4
Bag-of-Patterns Vv
Traditional DL Vv Vv
TapNet (Ours) Vv vV Vv V4

age of labeled data. To learn the latent features from mul-
tivariate time series efficiently, we design a random group
permutation method to reconstruct the dimensions of time
series into groups, preceded by convolutional layers. To han-
dle the issue of limited labeled data, we propose a novel at-
tentional prototype network to train a low-dimensional fea-
ture representation for each time series based on their dis-
tances to the class prototype learned by small labeled sam-
ples. Since the training process is distance-based, it requires
much fewer labeled samples than traditional deep neural net-
work. To summarize, our work has the following main con-
tributions:

e Propose an attentional prototype network to handle the
limited training samples. A distance-based loss function
between the class prototype and the time series samples
with the same class label is utilized to train a deep neural
network with limited labels.

e Learn a low-dimensional feature representation (embed-
ding) for multivariate time series. The learned embed-
dings have an attractive characteristic that the distance be-
tween the samples with the same label is much smaller
than the samples with different labels.

e Extend our model to semi-supervised settings to utilize
the unlabeled data. The embeddings of unlabeled data
are combined with labeled data to improve the estimation
of class prototype embeddings when the training data is
scarce.

e Conduct extensive experiments on the latest multivari-
ate time series classification archive comprising of 30
datasets with a wide range of applications. Our method
achieves the highest rank score compared with eight state-
of-the-art methods.

The rest of the paper is organized as follows. Section 2
discusses related work in multivariate time series classifi-
cation, and Section 3 introduces the problem definition and
notations. Section 4 introduces the proposed model. The ex-
perimental results on 30 UAE Archive datasets are presented
in Section 5, and the paper concludes with a summary of the
research in Section 6.

2 Related Work

In this section, we briefly describe recent advances in time
series classification research. We start our discussion with
recent progress in univariate time series classification, and
then we shift our focus to multivariate time series classi-
fication. Finally, we briefly describe recent work on semi-
supervised time series classification.

2.1 Univariate Time Series Classification

Most state-of-the-art time series classification work extends
upon one of the two major approaches: time series shapelet
(Ye and Keogh 2009) and bag-of-patterns model (Senin and
Malinchik 2013). For time series shapelet-based approaches
(Rakthanmanon and Keogh 2013)(Wang et al. 2016)(Ye and
Keogh 2009)(Fang, Wang, and Wang 2018), the models
identify subsequences that are the most discriminating of
the two classes. These subsequences can be used to trans-
form the original, not linearly separable time series into a
lower-dimensional space that is easier to classify. Bag-of-
patterns models (Senin and Malinchik 2013)(Schéfer and
Leser 2017a)(Li and Lin 2017) extract features from time
series via a different mechanism — inspired by the bag-of-
words models used for text data, they convert time series into
a bag of discrete words, and use the histogram of words to
represent the data. Recently, an increasing number of deep
learning techniques have been developed for univariate time
series classification. These techniques often use LSTM or
CNN to extract the features (Karim et al. 2018a)(Zhao et al.
2017).

2.2 Multivariate Time Series Classification

Similar to univariate time series -classification, most
work on multivariate time series classification (Baydo-
gan and Runger 2015)(Schifer and Leser 2017b)(Wis-
tuba, Grabocka, and Schmidt-Thieme 2015)](Baydogan and
Runger 2016) follows one of the two directions using time
series shapelet or bag-of-patterns models. Wistuba et al. in-
troduced an approach named Ultra Fast Shapelets (UFS)
(Wistuba, Grabocka, and Schmidt-Thieme 2015), which
randomly selects shapelets in order to avoid the costly pro-
cess of finding discriminative subsequences. A similar idea
is also used in the work by Karlsson et al. (Karlsson, Pa-
papetrou, and Bostrém 2016). They introduced an approach
named Generalized Random Shapelet Forests (gRSF) which
generates shapelet-based decision trees via randomly se-
lected shapelets. It has been shown that the model is com-
petitive compared with the interval feature based approaches
such as LPS (Baydogan and Runger 2016) and ARKernel
(Cuturi and Doucet 2011).

Following the idea of bag-of-patterns model, Baydogan
et al. (Baydogan and Runger 2015) introduced an approach
named Symbolic Representation for Multivariate Time se-
ries (SMTS). The algorithm attempts to capture the local
relationships between different dimensions by generating
a codebook directly from multivariate time series using a
greedy approach. Recently, Schafer et al. (Schifer and Leser
2017b) extends the Bag of SFA (Symbolic Fourier Approx-
imation) symbol model into multivariate case by using the
approach introduced in their previous work (Schifer and
Leser 2017a).

Recently, deep learning based methods (Karim et al.
2018b)(Zheng et al. 2014) achieve promising performance
in multivariate time series classification task. These mod-
els often use LSTM layer and stacked CNN layer to ex-
tract features from time series, and a softmax layer is
then applied to predict the label. Zheng et al. introduced



a model named Multi Channel Deep Convolutional Neu-
ral Network(MCDCNN)(Zheng et al. 2014), for which each
univariate time series is passed through a separate CNN
layer. The outputs of all univariate time series are concate-
nated and pass through a softmax layer to predict the la-
bel. In contrast, Karim et al. (Karim et al. 2018b) recently
proposed a model consisting of an LSTM layer and stacked
CNN layer along with Squeeze-and-Excitation block to gen-
erate latent features. Different from the conventional ap-
proaches, deep learning based methods learn the latent fea-
tures by training convolutional or recurrent networks with
large-scale labeled data. However, existing work does not
address the problem with (labeled) data shortage.

2.3 Semi-supervised Time Series Classification

It has been shown that in many applications, collecting la-
beled data is often very difficult. As a result, for time se-
ries classification, semi-supervised approaches have gained
much popularity in recent years. However, most existing
work on semi-supervised time series classification focuses
on univariate time series. The general approach is to use Dy-
namic Time Warping (DTW) (Wei and Keogh 2006)(Chen
et al. 2013) to estimate labels for unlabeled time series. It
has been shown that it can greatly improve the performance
over the original DTW classifier. Marussy et al. (Marussy
and Buza 2013) introduced an semi-supervised approach,
SUCCESS, which consists of constrained hierarchical clus-
tering and dynamic time warping. Begum et al. (Begum et
al. 2014) introduced a minimum description length (MDL)
based stopping criterion for semi-supervised learning. Most
of these work are designed for univariate time series classi-
fication.

3 Problem Formulation

In this section, we begin by formulating the multivariate
time series classification (MTSC) problem. Then a semi-
supervised classification problem for multivariate time se-
ries (SMTSC) is formally defined. The notations used in this
paper are summarized in Table 2.

3.1 Multivariate Time Series Classification
(MTSC)

A multivariate time series (MTS) X = {z1,...,xn} €
R™*! is an ordered sequence of m € N streams with
xr; = (a:M, ey xu), where [ is the length of time series and
m is the number of multivariate dimensions. For instance,
when a dust sensor collects 100 sequential particle density
records in three dimensions (PM1, PM2.5 and PM10), the
multivariate time series X can be represented as a matrix
with the dimension m = 3 and time series length [ = 100.
Each multivariate time series is associated with a class label
y € 2 from a predefined label set 2. Given a group of mul-
tivariate time series X = {X1,..., X,,} € R"*™*! where
n is the number of time series, and the corresponding labels
y = {y1,...,yn} € R" for each time series, the MTSC
task is to train a classifier fx +— y to predict a class label for
a multivariate time series whose label is unknown.

Table 2: Math Notations

Notations | Explanations

n,n size of labeled and unlabeled data samples
l,m time series length and dimension size

X € R multivariate features for one time series

X € R™*™x! | collection of time series data samples

y e R" collection of time series labels

X e R | collection of time series data samples without labels
d embedding dimension

h; € R4 low-dimensional embedding of i data sample
c, € RY class prototype of the &' class

Sk indices of data samples with label k&

3.2 Semi-supervised MTSC (SMTSC)

For semi-supervised MTSC problem, we assume the labeled
samples are not sufficient to train a model for multivariate
time series classification problem. So we intend to utilize
unlabeled data during the training process to help improve
the overall classification performance. The training set for
semi-supervised setting is denoted as a tuple of labeled and
unlabeled examples: ((X YY), X )). The labeled portion is
made up of the same input as MTSC problem, containing
tuples of time series features X and labels y. The unlabeled
portion includes a set of time series X = {Xl, ... 7Xﬁ}
containing only time series features without labels, where
X represents the input features of the i unlabeled time se-
ries and 7 is the size of unlabeled samples. The SMTSC task
is to train a classifier fx — y to predict a class label for a
multivariate time series with not only the labeled training
data samples (X', y) but unlabelled data samples X'.

4 Model

In this section, we first introduce the overall architecture of
new proposed TapNet model in Section 4.1. Then we explain
the components of our model in Section 4.2-4.4. Lastly, we
extend our model to semi-supervised setting (Semi-TapNet)
in Section 4.5. We are releasing the source code of our im-
plementation freely to the research community and it can be
accessed at https://github.com/xuczhang/tapnet.

4.1 Model Architecture Overview

Figure 1 shows the overall architecture of our proposed
model, TapNet, comprising of three main components: ran-
dom dimension permutation, multivariate time series encod-
ing, and attentional prototype learning.

The input of our model is a set of multivariate time se-
ries with multiple dimensions. An example of 6-dimensional
time series is shown in Figure 1. For each dimension, the
time series share the same time series length. To model
the interactive features between multivariate dimensions, we
propose a random group permutation (RDP) method to ran-
domly combine the dimensions into different groups with
fixed group size. Take the multivariate time series in Figure
1 as an example, we divide the six dimensions of the time se-
ries into three groups with different dimension permutations.
The detailed description of random dimension permutation
method can be found in Section 4.2.



After the dimension permutation, a low-dimensional time
series embedding is learned in the time series encoding
component. Specifically, we apply both the LSTM and 1-
Dimensional convolutional layers to model the sequential in-
formation of time series and the relationships between time
series dimensions. After low-dimensional embeddings are
learned, we use the embeddings of training samples as the
input to learn the prototype for each class. Here, the class
prototype is a feature representation (embedding) of each
class, which contains the same embedding size as the time
series. Specifically, the class prototype is a weighted com-
bination of the training samples in the same class, where
the weights of the training samples are trained by an atten-
tion layer. The intuition behind is to learn a class prototype
for each class, which has smaller distances to the data sam-
ples in the same class, but larger distances to data samples in
different classes. The details of time series encoding and at-
tentional prototype learning can be found in Section 4.3 and
4.4, respectively.

Also, we extend the supervised TapNet model into its
semi-supervised settings (Semi-TapNet). The Semi-TapNet
model utilizes the feature information of unlabeled data
(usually from the test set), which makes a notable improve-
ment when the training labels are not sufficient. The de-
tails of semi-supervised attentional prototype learning can
be found in Section 4.5.

4.2 Random Dimension Permutation

We propose a novel method, Random Dimension Permuta-
tion (RDP), to reorganize the time series dimensions into
different groups based on random permutation orders, which
helps to model the interactive features between multivariate
dimensions.

Suppose the time series have m dimensions and they are
divided into g groups, the size ¢ of each group can be repre-

m-«

sented as ¢ = LTJ’ where « is the scale factor parameter

to control the ratio of the total dimensions in the new per-
mutation over the original size and |- | represents the largest
integer less than or equal to the given input. As the example
shown in Figure 2, we have a time series with 6 dimensions
(m = 6), and they are divided into g = 3 groups with scale
factor a = 1.5. Then the group size ¢ = L%J = 3. We
define o, as one random permutation of a set of numbers
{1,...,m}. To divide all the dimensions into g groups, we
need to run the random permutation g times. For each per-
mutation, we retrieve the first ¢ dimensions as the group
candidates. To distinguish the different random permuta-
tions, we denote 05,? as random permutation for the i group
based on m dimensions. Then the candidates G, of the ™
group can be defined as follows:

Gi={o)(1),....c0 ()}, i=1...g 1)

The example in Figure 2 shows the time series
with six dimensions are divided into three groups
{(4,5,2),(1,2,6),(3,6,4) }. Three of six dimensions ap-
pears in two different groups, which is controlled by the
scale factor parameter.

4.3 Multivariate Time Series Encoding

The time series encoding component is to learn a low-
dimensional embedding € R? for each time series by
a neural network based function fo(X), where © is the
set of function parameters and X € R™*! is the time
series data. To extract the sequential information as well
as the multivariate features of the MTS data, we apply
both Long short-term memory network (LSTM) (Sunder-
meyer, Schliiter, and Ney 2012) and a multi-layer convolu-
tional network (Krizhevsky, Sutskever, and Hinton 2012).
For the LSTM part, operating over the raw time series data
X € R™*! we obtain the contextual embedding Xy, €
R™*%  where d; is the hidden dimension of LSTM with
the default value 128. Then we apply a global average pool-
ing operation on time series dimensions and get the output
Xistm+pool € IR'*% _ For the convolutional network part, the
input is the grouped permutations G = {Gi,...,G,}. We
apply three one-dimensional convolutional layers on each
group Xg, € R¥*!. After each convolutional layer, we op-
erate both Batch Normalization (Ioffe and Szegedy 2015)
and Leaky Rectified Linear Units (Leaky ReLU) (Xu et al.
2015). Noted that we use separate parameters for the first
convolutional layer but share the parameters for the 2"! and
3 Jayers, which can help to learn separate features for each
group but reduce the size of parameters in the last two lay-
ers. We set the default value of filters for the three convolu-
tional layers as 256, 256 and 128 and set kernels as 8, 5 and
3. For time series with extremely long length, we also ap-
ply dilated convolution operation (Yu and Koltun 2015) to
support exponential expansion of the receptive field with-
out loss of long-length time series information. The out-
put of the three convolutional layers for the i group is

X0 e R *de where d 1 is the filter size of the last con-
volutional layer and d. is the output dimension of convolu-
tional operations. For each group, a global average pooling
is applied on the convolutional dimensions d. and generate

the output X, C(;EW +pool € R? >, Then we concatenate the re-
sults of all the groups of convolutional network and LSTM
together and get the output Xcompe € R(%FX9Hd)XT T agt
we operate two fully connected layers on X ombo to generate
the low-dimensional feature representation (embedding) of
the multivariate time series & € R, where d is the dimen-
sion of the embedding. The details of the parameter settings

can be found in Appendix.

4.4 Attentional Prototype Learning

Since the training samples in time series data can be severely
limited, traditional deep learning network may have an in-
ductive bias (Neyshabur, Tomioka, and Srebro 2014). To ad-
dress the issue, we propose a novel attentional prototype
learning method by training the distance-based loss func-
tion. Specifically, in our approach, we learn a class prototype
embedding (Snell, Swersky, and Zemel 2017) for each class
and classify the input time series based on their distance to
the prototype of each class. Figure 3 shows an example of
the class prototypes in a 3-class classification scenario. The
embeddings of class prototypes are marked by star shape
(%) and the time series from the same class are represented
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Figure 1: Overall Architecture of the TapNet Model
Permutations Group-1 czak, and Welling 2018) method is applied to learn its in-
g4 stance weight for the class prototype. The attention weights
Dimensions 4 | 5 | 2 | 1 | 6 | 3 |—> 5 for the k' class can be computed by the follows:
\/\/\//\ —/ \2
1 T T
) 7a Group-2 Ay, = softmax (wk tanh (Vka )), 3)
N~ 1
3 J I
4 ‘/\ 1]2]6[3]5]4 ‘\/\ 2 where wy, € R**! and V}, € R**¢ are trainable parameters
~v~—--/ 6 for the attention model and w is the size of hidden dimension
5
6 Group-3 for both trainable parameters. Noted that we use separate
_JYs parameters wy, and V}, for each class due to the assumption
_I"f!”'ti"sa"i?te sfefaf2f1]s|—| " S|6 that the different classes may have distinct attentions on their
Ime Series [l feature spaces.

Figure 2: Example of random dimension permutation

by circle shape () in the same color. The weights be-
tween class prototype and time series measures how much
impact the time series have on the class prototype. The test
samples will be labeled by the nearest class prototype. Let
H, = [hl, ey h‘5k|] € RIS+1*4 be a matrix of time series
embeddings belonging to the class k, where S}, represents
the set of indices for data samples with class label k. Then
the prototype embedding of class k can be presented by a
weighted sum of individual sample embeddings as follows:

ch = Ap;-Hy; )

where Ay ; is the weight of i™ data sample in class k and
H;, ; represents the embedding of the data sample.

Here the sample weight Ay, ; is not a predefined parameter
but a trainable value according to the embeddings of time se-
ries. In particular, we regard the time series samples from the
same class as a bag of independent instances. For each in-
stance, an attention-based multi-instance pooling (Ilse, Tom-

After we have the embedding vectors of class prototypes,
the distribution over classes for a given time series © € R?
can be represented as a softmax over distances to the proto-
types in the embedding space as follows:

exp ( — D(f@(:c),ck))
Yiexp (= D(fe(x),ci))’

where the function D : R? x R? ~ [0, +00) is the dis-
tance function to measure the distances between two em-
bedding vectors. The distance function can be chosen from
regular Bregman divergences (Banerjee et al. 2005). Exam-
ples of Bregman divergences include squared euclidean dis-
tance and Mahalanobis distance (De Maesschalck, Jouan-
Rimbaud, and Massart 2000). Here we applied the squared
euclidean distance function D(z,2’) = ||z — 2'||? to mea-
sure the distance between the time series embeddings. Noted
that the probabilities over classes are based on the similarity
between class prototype and time series, therefore, we mul-
tiply —1 in front of the distance function. Then the training
of our model can be proceeded by minimizing the negative
log probability J(©) = —log pe(y = k|x) of the true class
via Adam algorithm (Kingma and Ba 2014).

klz) = “)

po(y
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Figure 3: Example of Class Prototype

4.5 Semi-supervised TapNet

We now extend our supervised TapNet approach into its
semi-supervised setting (Semi-TapNet) by utilizing the un-
labeled data in the training phase. The unlabeled data can
help to improve the estimation of the class prototype when
the training data is scarce.

Let H = [hl .. .,hlgl] e RI®1*4 be a matrix of time
series embeddings of unlabeled data, where S is the set of
indices for unlabeled data samples and h; € R is the
embedding vector for the i data sample in the unlabeled set.
Then the prototype embedding of class k can be presented by
a weighted sum of labeled and unlabeled data as follows.

_ Zz Ak,in,i + Zl Ak,i-gk,i
Zi Ak,i + ZZ Ak,i

Similar to the supervised version, we also learn instance
weight for the unlabeled data samples. Here fl;m- is the
weight of the i™ unlabeled data sample for class & and H. ki
is the corresponding embedding of the data sample. The at-

tention vector Ay, of class k for unlabeled data can be repre-
sented as follows:

&)

Ck

Ay, = softmax <u~;,{ tanh (Vkﬁ,’f)> 6)

where W, € R**! and V}, € R“*4 are trainable parameters
for the attention model. Then we apply the class prototype
updated by unlabeled data into probability distribution over
class in Equation (4) to train the semi-supervised model.

S Experiments

In this section, the performance of the proposed model Tap-
Net is evaluated using 30 datasets in the UEA multivariate
time series classification archive. We begin by introducing

the evaluation setting, with details on the datasets, metrics
and baselines we use in our experiments. Then the perfor-
mance of the proposed model in terms of supervised and
semi-supervised classification accuracy is evaluated against
several existing methods. Finally, the analyses on class pro-
totype and random dimension permutation are elaborated.
All the experiments are conducted on a single Tesla P100
GPU with 16GB memory.

5.1 Experimental Settings

Datasets In this experiment, we evaluate the proposed
method on the latest multivariate time series classification
archive (Bagnall et al. 2018). The archive is released in 2018
and consists of 30 datasets with a wide range of applica-
tions, dimensions and time series lengths. For each dataset,
the time series in each dimension have equal length, and the
train/test split is provided. According to the information in
the released paper (Bagnall et al. 2018), the archive consists
of 9 different Human Activity Recognition, 4 Motion clas-
sification, 3 ECG classification, 6 EEG/MEG classification,
5 Audio Spectra Classification, and three other type of data.
The characteristics of each dataset can be found in the Ap-
pendix.

The dimension of multivariate time series ranges from 2
dimensions in trajectory classification data (Libras) to 1,131
dimensions in the audio spectra classification data (Duck-
DuckGeese). The length of the time series ranges from 8
(pen digit recognition dataset) to 17,901 (worm type classi-
fication data, EigenWorms). The datasets also have a large
size range, from 27 (12 for training and 15 for testing in
StandWalkJump) to 50,000 (30,000 for training and 20,000
for testing in InsectWingbeat). The number of classes ranges
from 2 to 39.

We evaluate our proposed method using all 30 datasets.
Since the datasets have diverse characteristics, we can eval-
uate different aspects of our proposed method, as well
as showing statistical comparison between our proposed
method and existing approaches.

Metrics For each dataset, we compute the classification
accuracy as the evaluation metric. We also compute the av-
erage rank and the number of Win/Ties to compare different
methods. In addition, we test the overall performance of the
proposed approach via a statistical hypothesis test. The Crit-
ical Difference Diagram (Demsar 2006) is used to show the
overall performance of TapNet.

Comparison Methods We compare our proposed ap-
proach with 8 different benchmark approaches, including
the latest bag-of-patterns model based multivariate time
series classification approach(Schifer and Leser 2017b),
deep learning framework and common distance-based clas-
sifiers(Karim et al. 2018b). Note that it has been shown
in previous work(Schifer and Leser 2017b)(Karim et al.
2018b) that these approaches are equivalent or better than
many other feature-based approaches such as SMTS(Baydo-
gan and Runger 2015), gRSF(Baydogan and Runger 2016),
and LPS(Karlsson, Papapetrou, and Bostrém 2016). The de-
tails of the benchmarks we use are provided as follows:



o WEASEL-MUSE(Schifer and Leser 2017b): This is the
latest bag-of-patterns (BOP) based framework for multi-
variate time series classification. WEASEL-MUSE first
generates multivariate symbols given the time series and
uses a Chi-square test based feature selection pipeline to
extract features. The generated features are then fed into a
classifier to identify the label. We use the source code pro-
vided by the authors !. The approach is run under the rec-
ommended setting provided by the authors (Schifer and
Leser 2017Db).

o MLSTM-FCN(Karim et al. 2018b): This is the latest gen-
eral deep-learning framework for multivariate time series
classification. The model consists of a LSTM layer and
stacked CNN layer along with Squeeze-and-Excitation
block to generate latent features. Then a MLP with soft-
max activation function is used to predict the label. We
use the source code provided by the authors 2. The ap-
proach is run using the default parameter setting (Karim
et al. 2018b).

e INN-ED with (without) normalization: The one nerest
neighbor classifier with Euclidean distance is the most
popular baseline used for time series classification. We di-
rectly report the accuracy results provided in the archive
(Bagnall et al. 2018).

e INN-DTW-i, dimension-independent dynamic time
warping with (without) normalization: This one nearest
neighbor classifier computes distances based on the
sum of DTW distance for every dimension. Similar to
INN-ED benchmark, we compare with the algorithm
with (without) normalization. We directly report the
performance results provided in the archive (Bagnall et
al. 2018).

e |INN-DTW-D, dimension-dependent dynamic time warp-
ing(Shokoohi-Yekta, Wang, and Keogh 2015) with (with-
out) normalization. This is a variation of DTW-i approach
which directly computes DTW distance based on multi-
dimension points instead of treat each dimension sepa-
rately. It has been shown in previous work that DTW-
D can yield more accurate result compared with DTW-i.
We directly report the performance results provided in the
archive (Bagnall et al. 2018).

5.2 Classification Performance Evaluation

The classification accuracy, the average rank and number of
Wins/Ties of each method is shown in Table 3. “N/A” in
the table indicates the approach is out of memory, or the
accuracy is not reported in (Bagnall et al. 2018). The best
accuracy for each dataset is denoted with boldface. Overall,
our approach outperforms all the other baseline approaches
in terms of average rank. TapNet achieves the lowest over-
all average rank of 3.1. The approach with the second low-
est average rank is WEASEL+MUSE, which is ranked at
3.56. DTW-INN-D achieves the third lowest overall av-
erage rank of 4.5. MLSTM and DTW-INN-D with nor-

Uhttps://github.com/patrickzib/SFA
*https://github.com/titu1994/MLSTM-FCN
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Figure 4: Critical Difference Diagram Generated via error
rate of 30 tested dataset

malization achieve similar average rank (4.85 and 4.86 re-
spectively). DTW-1NN-i and ED-1NN have the worst per-
formance among all approaches. In terms of the number
of wins/ties, TapNet achieves 14 win (or ties), the best
among all eight classifiers. WEASEL+MUSE achieves 12
wins/ties, but the deep learning model, MLSTM-FCN only
wins (or ties) in 6 datasets. One nearest neighbor classifiers
(ED or DTW) generally only win (or tie) in 1 to 3 datasets.

Compared with MLSTM-FCN, TapNet can achieve bet-
ter performance in most datasets containing small amount of
data (e.g. the StandWalkJump dataset, which only contains
12 training samples). MLSTM-FCN often gets overall better
performance in high dimensional datasets (e.g. DuckDuck-
Geese and SpokenArabicDigits). In contrast, TapNet can get
better performance in both large and small data.

Compared with WEASEL+MUSE, TapNet can achieve
better performance in most high dimensional or large
time series, whereas WEASEL+MUSE may not be
able to execute due to memory issue. This is because
WEASEL+MUSE needs to generate symbols (words) for
every subsequence per length per dimension. In the high di-
mensional time series, the dictionary size can increase dra-
matically, which makes it hard for the approach to handle
large datasets.

Next we conduct statistical hypothesis test to evaluate
performance of TapNet. Figure 4 shows the critical differ-
ence diagram (with alpha = 0.05) drawn based on Table
3 (Demsar 2006). The values in the figure are the average
ranks; the approaches connected by a bold bar have no sta-
tistically significant difference from one another. TapNet is
in the group of best classifiers. In addition, according the
diagram, TapNet is the only method in the experiment that
is significantly better than DTW-i, whereas all other latest
methods do not show statistically better results compared
with DTW-i.

5.3 Semi-Supervised Performance

We next demonstrate that semi-TapNet introduced in this pa-
per can further improve the performance of classification.
We select all datasets which have significantly imbalance
training/test split. A total of 5 datasets are selected.



Table 3: Performance Comparison in UEA Multivariate Time Series Dataset

DTW- DTW-1NN-
Dataset TapNer | MV | MRS B | ORGPV RN i D
(norm) (norm)
Articulary WordRecognition 0.987 0.973 0.99 0.97 0.98 0.987 0.97 0.98 0.987
AtrialFibrillation 0.333 0.267 0.333 0.267 0.267 0.2 0.267 0.267 0.22
BasicMotions 1 0.95 1 0.675 1 0.975 0.676 1 0.975
CharacterTrajectories 0.997 0.985 0.99 0.964 0.969 0.99 0.964 0.969 0.989
Cricket 0.958 0.917 1 0.944 0.986 1 0.944 0.986 1
DuckDuckGeese 0.575 0.675 0.575 0.275 0.55 0.6 0.275 0.55 0.6
EigenWorms 0.489 0.504 0.89 0.55 0.603 0.618 0.549 N/A 0.618
Epilepsy 0.971 0.761 1 0.667 0.978 0.964 0.666 0.978 0.964
ERing 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133
EthanolConcentration 0.323 0.373 0.43 0.293 0.304 0.323 0.293 N/A 0.323
FaceDetection 0.556 0.545 0.545 0.519 0.513 0.529 0.519 0.5 0.529
FingerMovements 0.53 0.58 0.49 0.55 0.52 0.53 0.55 0.52 0.53
HandMovementDirection 0.378 0.365 0.365 0.279 0.306 0.231 0.278 0.306 0.231
Handwriting 0.357 0.286 0.605 0.371 0.509 0.607 0.2 0.316 0.286
Heartbeat 0.751 0.663 0.727 0.62 0.659 0.717 0.619 0.658 0.717
InsectWingbeat 0.208 0.167 N/A 0.128 N/A 0.115 0.128 N/A N/A
JapaneseVowels 0.965 0.976 0.973 0.924 0.959 0.949 0.924 0.959 0.949
Libras 0.85 0.856 0.878 0.833 0.894 0.872 0.833 0.894 0.87
LSST 0.568 0.373 0.59 0.456 0.575 0.551 0.456 0.575 0.551
MotorImagery 0.59 0.51 0.5 0.51 0.39 0.5 0.51 N/A 0.5
N/ATOPS 0.939 0.889 0.87 0.86 0.85 0.883 0.85 0.85 0.883
PEMS-SF 0.751 0.699 N/A 0.705 0.734 0.711 0.705 0.734 0.711
PenDigits 0.98 0.978 0.948 0.973 0.939 0.977 0.973 0.939 0.977
Phoneme 0.175 0.11 0.19 0.104 0.151 0.151 0.104 0.151 0.151
RacketSports 0.868 0.803 0.934 0.868 0.842 0.803 0.868 0.842 0.803
SelfRegulationSCP1 0.652 0.874 0.71 0.771 0.765 0.775 0.771 0.765 0.775
SelfRegulationSCP2 0.55 0.472 0.46 0.483 0.533 0.539 0.483 0.533 0.539
SpokeN/ArabicDigits 0.983 0.99 0.982 0.967 0.96 0.963 0.967 0.959 0.963
StandWalkJump 0.4 0.067 0.333 0.2 0.333 0.2 0.2 0.333 0.2
UWaveGestureLibrary 0.894 0.891 0.916 0.881 0.869 0.903 0.881 0.868 0.903
Avg. Rank 31 4.85 3.56 6.28 5.33 4.51 6.61 5.86 4.86
Wins/Ties 14 6 12 1 3 3 1 3 2

Table 4: Performance of Semi-Supervised TapNet

Dataset (Training/Test) TapNet Semi-
TapNet
I50850) oy 0
UWave(:%eOs/t;;%I;ibrary 0.894 0.903
Articularzlz\f;’g;g(l){oe)cognition 0.987 0.993
Stam(il\;'/ail;; ump 0.4 0.4
e s

The classification accuracy results of TapNet and Semi-
TapNet in these 5 datasets are shown in Table 4. Semi-
TapNet outperforms TapNet in 4 out of 5 selected datasets.
Only one dataset, StandWalkJump, shows no improvement.

Semi-TapNet can achieve better performance in data
that have significantly larger number of test samples com-
pared with training samples. For example, in the Handwrit-
ing dataset, which has 850 test samples vs. 150 training
samples, Semi-TapNet can improve the classification accu-

racy from 0.3565 to 0.3882 (approximately 9% improve-
ment), whereas in the ArticularyWordRecognition dataset
and JapaneseVowels, which have less imbalance train-
ing/test split and numbers of samples, the improvement is
relatively small (from 0.987 to 0.993 and from 0.965 to
0.968 respectively). The results indicate that semi-TapNet
can outperform TapNet when the dataset contains a limited
number of labeled data but a larger number of unlabeled
data.

5.4 Inspection of Class Prototype

In this section, we visualize the class prototypes and their
corresponding time series embeddings to demonstrate the
effectiveness of our trained low dimensional time series em-
bedding. We used the t-SNE algorithm (Maaten and Hin-
ton 2008) to visualize the 300-dimension time series em-
bedding in the form of two-dimensional images. We use dif-
ferent colors to isolate different classes, and we use o and
x markers to represent the training and testing samples, re-
spectively. The class prototype is shown by the % mark.
Figure 5 shows the embeddings learned for the Character-
trajectories dataset, which contains 1422 training samples
and 1436 testing samples in 20 different classes. From the
results, we can conclude that: 1) the distances between data
samples from different classes are much larger than the dis-
tances from the same class, which means we can easily use
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Figure 5: Class Prototype Inspection: visualize the 300-
dimension multivariate time series embeddings in two di-
mensional image by t-SNE. The class prototype is marked
by *.

the learned multivariate time series embeddings to classify
the time series; 2) the low dimensional time series embed-
dings give us a more interpretable perspective to understand
the issues of the classifier. For instance, we can see the em-
beddings between class 3 and 6 are too close to separate the
two classes. In fact, some testing examples in 6 are misclas-
sified to class 3 and vice visa. It does help to identify the
issue of a classifier and take further actions such as adding
more training samples in the two classes.

5.5 Analysis on Random Dimension Permutation

We next evaluate the impact of accuracy by using Random
Dimension Permutation. We compared with TapNet with
(without) uses of random dimension permutation in all 30
datasets. Group number and scale factor used in the experi-
ment can be found in appendix.

The pairwise accuracy comparison in all 30 datasets is
shown in Figure 6. The x-axis is the accuracy of TapNet with
Random Dimension Permutation and y-axis is the accuracy
that TapNet achieved without Random Dimension Permuta-
tion. The point fallen into the shadow indicates that TapNet
with Random Permutation improves the performance.

According to Figure 6, the performance increases in 22
out of 30 datasets, and only decrease in 8 datasets. These
datasets include most of datasets contains 100 to 300 sam-
ples with dimension ranging from 2 to 100. The experiment
shows that Random Dimension Permutation can overall in-
crease the performance of TapNet.

6 Conclusion

In this paper, we present a novel distance-based deep learn-
ing framework, named TapNet, for multivariate time series
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Figure 6: Performance Comparison on TapNet with (with-
out) RDP

classification problem. In particular, we propose a novel
attentional prototype network to train the low-dimensional
feature representations based on their distances to class pro-
totype with limited training labels. Moreover, a random
group permutation method is designed to learn the inter-
active features in multivariate dimensions combined with
multi-layer convolutional networks. Additionally, we pro-
pose a semi-supervised model, Semi-TapNet, to utilize the
unlabeled data in improving the classification performance
when training samples are scarce. The experimental results
demonstrate that our model can achieve the highest average
rank on 30 datasets in the public UEA archive compared to
eight state-of-the-art methods.
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A Appendix

In the Appendix Section, the architecture of Multivariate time series encoding and experiment parameters setup are presented.

A.1 Architecture of Multivariate Time Series Encoding

Table 5 presents the architecture of the multivariate time series encoding component. According to the overall architecture of TapNet model
in Figure 1, we divide the encoding component into sub-components: LSTM, Conv and FC. We denote a Long-short term memory network
layer by “LSTM?”, in brackets we give the size of hidden dimensions of LSTM. The convolutional layer is denoted by “Conv”, in brackets
we provide the kernel size, stride and padding. The number of filters are provided after a dash. The batch normalization and leaky ReL.U
activation function are used after convolutional operation. We denote the fully connected layer by “FC” and the output dimension is provided
after a dash.

Table 5: Implementation Details for MultivariateTime Series Encoding

\ | Layer | Type |
LSTM 1 LSTM(128)
2 Global Average Pooling (2)
Conv 1-1 Conv(8,1,0)-256 filters + Batch Norm + Leaky ReLU
1-2 Conv(8,1,0)-256 filters + Batch Norm + Leaky ReLU
1-3 Conv(8,1,0)-256 filters + Batch Norm + Leaky ReLU
2 Conv(5,1,0)-256 filters + Batch Norm + Leaky ReLU
3 Conv(3,1,0)-128 filters + Batch Norm + Leaky ReLU
4 Global Average Pooling (2)
FC 1 FC-500 + Batch Norm + Leaky ReLU
2 FC-300 + Batch Norm + Leaky ReLU

A.2 Experiment Parameter Settings

In Table 6, the details of the optimization procedure for TapNet are given, including the optimizer, learning rate, weight decay, epochs and
stopping criteria. Since most of the datasets in our experiment contain limited training samples, it is not feasible to separate a validation
set from the small size of training samples. For example, the dataset “AtrialFibrillation” contains only 15 training samples for 3 classes. It
is impossible to split the incredibly small training samples into training and validation sets. Thus, we use the stop condition only based on
the our training loss. During the training, we found our training loss can be converged to a close to zero number. Therefore, we set the stop
condition as the difference of training loss between epochs is less than a small threshold, 1e-9.

Table 6: The optimization procedure details

Optimizer | Learning Rate | Weight decay | Epochs Stopping criteria
Training loss difference between epochs less than
Adam 0.00001 0.001 3000 le-9
or reach the maximum epoch

Due to the various types of our 30 experiment datasets, it is infeasible to use a fixed set of parameters to fit all the datasets. For instance, the
“InsectWingbeat” dataset contains 30,000 training samples but the “AtrialFibrillation” dataset only contains 15 training samples. For some
extremely large dataset, it is easy to get out-of-memory issue in GPU if we set a large filter number. Therefore, we use smaller values for filters
for large size of dataset. Moreover, the time series length are extremely different in our datasets. For example, the “EigneWorms™ dataset has
time series with 17984 length but the time series length in “PenDigits” dataset is only 8. So it is infeasible to apply our default kernel size “8”
into a 8-length time series in “PenDigits” dataset.

We demonstrate all the parameters for each dataset in Table 1 as well as the characteristics of the datasets such as number of samples,
multivariate dimension, time series length and number of classes. The training and testing samples are presented in the format of “# of training
samples / # of testing samples”. The parameters varied by datasets include Random Dimension Permutation (RDP), Dilation, Filters, Kernels
and Learning rate (LR). The RDP parameters are presented by the format “# of group / scale factor”. The number of filters and kernels of all

three convolutional layers are separated by comma in the format of “# of 1** layer , # of 2" layer, # of 3™ layer”. All the other parameters and
network structures are kept the same as the default settings for all the 30 datasets.



Table 7: Paramter Setting for All 30 UEA Multivariate Time Series Datasets
\ Dataset | Samples | Dim [ Length [ Class || RDP | Dilation |  Filters [ Kernels [ LR |

ArticularyWordRecognition | 275/300 9 144 25 3/1.5 10 256,256,128 85,3 le-5
AtrialFibrillation 15/15 2 640 3 3/1.5 1 256,256,128 | 8,53 le-5
BasicMotions 40/40 6 100 4 3/1.5 1 256,256,128 8,53 le-5
CharacterTrajectories 1422/1436 3 182 20 3/1.5 1 256,256,128 | 8,53 le-5
Cricket 108/72 6 1197 12 3/1.5 1 256,256,128 85,3 le-5
DuckDuckGeese 60/40 1345 270 5 3/1.5 1 256,256,128 | 8,53 le-5
EigenWorms 128/131 6 17984 5 3/1.5 200 256,256,128 8,53 le-5
Epilepsy 137/138 3 206 4 3/1.5 1 256,256,128 8,53 le-5
ERing 30/30 4 65 6 3/1.5 1 256,256,128 8,53 le-5
EthanolConcentration 261/263 3 1751 4 3/1.5 200 256,256,128 8,53 le-6
FaceDetection 5890/3524 | 144 62 2 3/1.5 200 64,64,32 8,53 | Se-5
FingerMovements 316/100 28 50 2 3/1.5 1 256,256,128 8.,5,3 le-5
HandMovementDirection 320/147 10 400 4 3/1.5 1 256,256,128 8,53 le-5
Handwriting 150/850 3 152 26 3/1.5 1 256,256,128 8,53 le-5
Heartbeat 204/205 61 405 2 3/1.5 200 64,64,32 8,5,3 le-6
InsectWingbeat 30K/20K 200 78 10 2/4 10 4,84 8.,5,3 le-4
Japanese Vowels 270/370 12 29 9 3/1.5 1 256,256,128 | 8,53 le-5
Libras 180/180 2 45 15 3/1.5 1 256,256,128 85,3 le-5

LSST 2459/2466 6 36 14 3/1.5 1 256,256,128 | 8,53 le-5
MotorImagery 278/100 64 3000 2 3/1.5 1 256,256,128 85,3 le-5
NATOPS 180/180 24 51 6 3/1.5 1 256,256,128 | 8,53 le-5
PEMS-SF 267/173 963 144 7 3/1.5 1 256,256,128 8,53 le-5
PenDigits 7494/3498 2 8 10 3/1.5 1 256,256,128 | 4,1,1 le-3
Phoneme 3315/3353 11 217 39 3/1.5 1 64,64,32 85,3 le-3
RacketSports 151/152 6 30 4 3/1.5 1 256,256,128 8,53 le-5
SelfRegulationSCP1 268/293 6 896 2 3/1.5 1 256,256,128 8,53 le-6
SelfRegulationSCP2 200/180 7 1152 2 3/1.5 1 256,256,128 8,53 le-9
SpokenArabicDigits 6599/2199 13 93 10 3/1.5 1 128,128,64 8,53 le-4
StandWalkJump 12/15 4 2500 3 3/1 1 256,256,128 8,53 le-5
UWaveGestureLibrary 120/320 3 315 8 3/1.5 1 256,256,128 8,5,3 le-5




