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A Related Work

The work related to this paper is summarized in three cate-
gories below.

A.1 Self-Paced Learning

In recent years, self-paced learning (Kumar et al. 2010)
has received widespread attention for various applications
in machine learning, such as image classification (Jiang
et al. 2015), event detection (Jiang et al. 2014a) and ob-
ject tracking (Supancic and Ramanan 2013; Zhang et al.
2016). Inspired by the learning processes used by humans
and animals (Bengio et al. 2009), self-paced learning (SPL)
(Kumar et al. 2010) considers training data in a meaning-
ful order, from easy to hard, to facilitate the learning pro-
cess. Unlike standard curriculum learning (Bengio et al.
2009), which learns the data in a predefined curriculum
design based on prior knowledge, SPL learns the training
data in an order that is dynamically determined by feed-
back from the learning process itself, which means it can
be more extensively utilized in practice. Furthermore, a
wide assortment of SPL-based methods (Pi et al. 2016;
Ma et al. 2017a) have been developed, including self-paced
curriculum learning (Jiang et al. 2015), self-paced learn-
ing with diversity (Jiang et al. 2014b), multi-view (Xu et
al. 2015) and multi-task (Li et al. 2017a; Keerthiram Mu-
rugesan 2017) self-paced learning. In addition, several re-
searchers have conducted theoretical analyses of self-paced
learning. Meng et al. (Meng et al. 2015) provides a theoret-
ical analysis of the robustness of SPL, revealing that the im-
plicit objective function of SPL has a similar configuration
to a non-convex regularized penalty. Such regularization re-
stricts the contributions of noisy examples to the objective,
and thus enhances the learning robustness. Ma et al. (Ma et
al. 2017b) proved that the learning process of SPL always
converges to critical points of its implicit objective under
mild conditions. However, none of the existing self-paced
learning approaches can be applied to our problem of lever-
aging clean labels in noisy data.
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A.2 Robust Learning
A large body of literature on the robust learning problem
has been established over the last few decades. Most of
the studies aim to directly learn from noisy labels and fo-
cus on noise-robust algorithms. For instance, Chen et al.
(Chen et al. 2013) proposed a robust algorithm based on
trimmed inner product. McWilliams et al. (McWilliams et
al. 2014) proposed a sub-sampling algorithm for large-
scale corrupted linear regression. Bhatia et al. (Bhatia et
al. 2015) and Zhang et al. (Zhang et al. 2017b) proposed
hard-thresholding based methods with strong guarantees of
coefficient recovery under a mild assumption on datasets.
Another group of methods focuses on removing or cor-
recting mislabeled data. For example, some work utilized
heavy-tailed distributions (Zhu et al. 2013) such as Stu-
dent t-distribution and Poisson distribution, to model the
mislabeled data, while others detected these outliers based
on Gaussian distribution (Solberg and Lahti 2005; Hodge
and Austin 2004) under the assumption that outliers have
a small probability of occurrence in the population. Some
methods do not assume any prior knowledge on the data
distribution based on kernel functions (Latecki et al. 2007;
Roth 2006). These approaches utilize kernel functions to ap-
proximate the actual density distribution and declare the in-
stances lying in the low probability area of the kernel density
function as outliers. However, all these approaches typically
jointly learn the clean and noisy data together, but cannot
fully leverage the information contained in the clean set.

A.3 Weakly-Supervised Learning
Recently, some work in weakly-supervised learning (Med-
lock and Briscoe 2007) utilized additional clean labels in
learning a noisy dataset. For instance, Azadi et al. (Zhang
et al. 2017a) proposed an auxiliary image regularization to
train a deep convolutional neural network in noisy labeled
image data, in which a limited number of training examples
are supplied with clean labels. In order to classify images
from weakly labeled data, Li et al. (Li et al. 2017b) used
not only a small clean dataset, but some other “side” infor-
mation of label relations in a knowledge graph. Veit et al.
(Veit et al. 2017) used millions of images with noisy anno-
tations in conjunction with a small set of cleanly-annotated
images to learn effective image representations, while Jiang
et al. (Jiang et al. 2017) designed a curriculum paradigm



to learn the instance weights in corrupted labels to prevent
deep convolutional neural networks from overfitting. Com-
pared to existing work utilizing the clean dataset, our meth-
ods are different in two ways. First, we consider the learn-
ing process from clean to noisy data in a self-paced manner,
which hedges the risk of training corrupted data samples.
Moreover, our model learns the instance weight determined
by the feedback of the learner itself without using any ad-
ditional prior knowledge, which means our methods can be
applied to more general problems in practice.

B Proof of Theorem 1
Proof. Before we prove the convergence of Algorithm 1,
we will first show that the value of objective function J is
monotonically decreased. Objective function J has the fol-
lowing property:
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The inequality follows from the fact that λ increases mono-
tonically so that λt+1 ≥ λt and vti ≥ 0. The optimization
step in Line 7 in Algorithm 1 guarantees the following prop-
erty:
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Therefore, we have the following property:
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Similarly, the following inequality is satisfied since the op-
timizations step in Line 5 in Algorithm 1.
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Since the objective function is monotonically decreased
and it has a lower bound according to Lemma 1, we have
‖J t+1 − J t‖2 < ε for ∀ε > 0.

C Analysis of Parameter λ
Figure 1 shows the impact of parameter λ on both the ro-
bust regression and classification tasks. In Figure 1(a), the
blue line depicts the relationship between parameter λ and
the coefficient recovery error. As λ increases, the recovery
error continues to decrease until it reaches a critical point,
after which it increases. These results indicate that the train-
ing process will keep improving the model until parameter λ
becomes so large that some corrupted samples are incorpo-
rated into the training data. The red line shows the value of
the objective function J in terms of different values of pa-
rameter λ, leading us to conclude: 1) The value of objective
function J monotonically decreases as λ increases. 2) The
objective function J decreases much faster once λ reaches
a critical point, following the same pattern as the recovery
error shown in the blue line. In Figure 1(b), the blue line
shows the values of the F1 score for the binary classification
task. When λ increases, the F1 score increases quickly until
it reaches a peak point. After that point, the score decreases
because more corrupted data is incorporated into the train-
ing set. The red line shows the size of the training set. We
can conclude: 1) When parameter λ increases, the size of the
training set continuously increases until it reaches its maxi-
mum value. 2) When all the data is included into the training
set, the F1 score also remains stable.
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Figure 1: Impact of Parameter λ on Robust Regression and Clas-
sification Tasks
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